PyTorch深度学习实战——使用卷积神经网络执行图像分类

PyTorch深度学习实战——使用卷积神经网络执行图像分类

0. 前言

我们已经在《卷积神经网络详解》一节中介绍了传统神经网络在面对图像平移时的问题以及卷积神经网络 (Convolutional Neural Network, CNN) 的工作原理。CNN 的关键思想是通过卷积操作来提取输入数据中的特征,并使用池化操作进行降采样,以逐渐减少参数数量,从而减少计算量并提高模型的效率。在本节中,将介绍 CNN 在图像平移后如何解决错误预测的问题。

1. Fashion-MNIST 数据集图像分类

Fashion-MNIST 数据集的预处理部分与《使用PyTorch构建神经网络》一节中的代码相同,但当我们整形 (.view) 输入数据时,不是将输入展平为 28 x 28 = 784 维,而是将每个输入图像的形状重塑为 (1,28,28) (需要特别注意的是,在 PyTorch 中,首先要指定

评论 105
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

盼小辉丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值