图神经网络实战——MolGAN详解与实现

0. 前言

在本节中,我们将实现一个基于生成对抗网络 (Generative Adversarial Network, GAN) 图生成模型 molecular GAN (MolGAN),该模型结合了生成器、鉴别器和来自强化学习的奖励网络。这种架构不仅能简单地模仿训练过程中看到的图,还能优化所需的特性,如溶解性等,本节将使用 DeepChemTensorFlow 创建独特而有效的分子。这类图生成模型在药物发现行业十分常见,可以大大加快药物开发的速度。

1. MolGAN 介绍

molecular GAN (MolGAN) 是由 De CaoKipf2018 年提出深度图生成架构。它结合了带有梯度惩罚的 WGA

评论 69
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

盼小辉丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值