TensorFlow深度学习实战(13)——神经嵌入详解

0. 前言

神经嵌入 (Neural Embedding) 是一种通过神经网络模型将离散的符号(如词语、字符、图像等)映射到低维连续向量空间中的技术。它属于更广泛的嵌入 (Embedding) 技术范畴,在深度学习中起着关键作用。神经嵌入通过在神经网络训练过程中学习到的向量表示,捕捉了输入数据的潜在特征和语义信息。

1. 神经嵌入简介

Word2Vec 和 GloVe 提出以来,词嵌入技术已经取得了多方向的发展。其中一种方向是将词嵌入应用于非词汇环境,也称为神经嵌入 (Neural Embedding) 。我们知道,词嵌入利用了分布假设,即出现在相似上下文中的词通常具有相似的含义,其中上下文通常是围绕目标词的一个固定大小(单词数量)的窗口。
神经嵌入的核心思想与之相似,即出现在相似上下文中的实体通常彼此密切相关。构建这些上下文的方式通常依赖于具体情况。接下来,我们将介绍两种基础且通用的技术,能够应用于多种用例。

1.1 Item2Vec

Item2Vec 嵌入模型最早由 BarkanKoenigstein 提出,用于协同过滤 (collaborative filtering),

评论 58
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

盼小辉丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值