[Luogu P2470] [BZOJ 1068] [SCOI2007]压缩

洛谷传送门

BZOJ传送门

题目描述

给一个由小写字母组成的字符串,我们可以用一种简单的方法来压缩其中的重复信息。压缩后的字符串除了小写字母外还可以(但不必)包含大写字母RRMM,其中MM标记重复串的开始,RR重复从上一个MM(如果当前位置左边没有MM,则从串的开始算起)开始的解压结果(称为缓冲串)。

bcdcdcdcd可以压缩为bMcdRR,下面是解压缩的过程:

已经解压的部分 解压结果 缓冲串
b b b
bM b .
bMc bc c
bMcd bcd cd
bMcdR bcdcd cdcd
bMcdRR bcdcdcdcd cdcdcdcd

输入输出格式

输入格式:

输入仅一行,包含待压缩字符串,仅包含小写字母,长度为nn

输出格式:

输出仅一行,即压缩后字符串的最短长度。

输入输出样例

输入样例#1:

aaaaaaa

输出样例#1:

5

输入样例#2:

bcdcdcdcdxcdcdcdcd

输出样例#2:

12

说明

在第一个例子中,解为aaaRa,在第二个例子中,解为bMcdRRxMcdRR。

【限制】

50%的数据满足:1n201\le n\le 20

100%的数据满足:1n501\le n\le 50

解题分析

dp[i]dp[i]表示长度为ii的前缀的最短长度, 每次我们考虑向后添加一段形如M***R**的段, 然后转移。

判字符串是否相等直接用字符串哈希, 然后每次前一半和后一半相同就加上一个RR, 前面长度减半,然后对答案取minmin。 否则在这段序列后加一个单独的字母。

总复杂度O(N3)O(N^3)

注意特判l=1l=1的情况, 因为第一段不需要在前面加上MM

代码如下:

#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <cctype>
#include <climits>
#include <algorithm>
#define R register
#define IN inline
#define W while
#define gc getchar()
#define ll long long
#define BASE 233
#define MOD 998244353
#define MX 55
template <class T> IN T max(T a, T b) {return a > b ? a : b;}
template <class T> IN T min(T a, T b) {return a < b ? a : b;}
int len;
int dp[MX], hs[MX], base[MX];
char str[MX];
IN int seg(R int l, R int r) {return (hs[r] - 1ll * hs[l - 1] * base[r - l + 1] % MOD + MOD) % MOD;}
struct INFO {bool typ; int ret;};
IN INFO get(R int l, R int r)
{
	int best = INT_MAX, sym = 1, avai = r - l + 1, mid;
	W (l < r)
	{
		mid = l + r >> 1;
		W (l < r && seg(l, mid) != seg(mid + 1, r)) --r, mid = l + r >> 1, ++sym;
		if (l == r) break;
		++sym, r = mid;
		best = min(best, sym + r - l + 1);
	}
	return (best <= avai ? (INFO){false, best} : (INFO){true, avai});
}
int main(void)
{
	scanf("%s", str + 1);
	len = std::strlen(str + 1);
	base[0] = 1;
	for (R int i = 1; i <= len; ++i)
	{
		base[i] = 1ll * base[i - 1] * BASE % MOD;
		hs[i] = (1ll * BASE * hs[i - 1] % MOD + str[i]) % MOD;
	}
	INFO res;
	for (R int i = 1; i <= len; ++i)
	{
		res = get(1, i);
		if (!res.typ) dp[i] = res.ret - 1;
		else dp[i] = res.ret;
		for (R int j = 2; j <= i; ++j)
		{
			res = get(j, i);
			dp[i] = min(dp[i], dp[j - 1] + res.ret);
		}
	}
	printf("%d\n", dp[len]);
}

发布了458 篇原创文章 · 获赞 88 · 访问量 3万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 技术黑板 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览