求数组的连续子序列最大和

1.首先最朴素的方法是暴力 O(n^3)

       直接两个for循环枚举子序列的首尾,然后再来个循环计算序列的和,每次更新和的最大值。

        但是这种方法的复杂度是O(n^3),效率实在太低了。。。

————————————————————————————————————————————————

2. 第二种方法是预处理 O(n^2)

       在读入的时候将前面数的和放在数组中,就能得到一个数组sum[i]储存前i个数的和。然后两重循环枚举首尾,利用sum数组迅速求出子序列的和。

        其实这种方法只是优化了前面那种方法的计算和的循环,复杂的是O(n^2),也很糟糕。

3. 第三种是动态规划 O(n)

        dp做法是很普遍的做法,只要想出状态转移方程就可以很快做出来了。

        状态转移方程:sum[i] = max{sum[i-1]+a[i],a[i]}. (sum[i]记录以a[i]为子序列末端的最大连续和。)在dp的过程中便可以更新sum数组的最大值以及两个边界。

        其实完全可以不用开数组,累计sum直到sum + a < a,把sum赋值为a,更新最大值就行了。你会发现这跟第4种方法是一样的。。。只是判断条件不一样,一个是sum <= 0一个是sum + a < a。。。(其实是一样的。。。)所以复杂度和第四种是一样的都是O(n)。

/* 最大子数组 返回起始位置 */
<pre name="code" class="cpp">void Maxsum_location(int * arr, int size, int & start, int & end)
{
    int maxSum = -INF;
    int sum = 0;
    int curstart = start = 0;  /* curstart记录每次当前起始位置 */
    for(int i = 0; i < size; ++i)
    {
        if(sum < 0)
        {
            sum = arr[i];
            curstart = i;     /* 记录当前的起始位置 */
        }else
        {
            sum += arr[i];
        }
        if(sum > maxSum)
        {
            maxSum = sum;
            start = curstart; /* 记录并更新最大子数组起始位置 */
            end = i;
        }
    }
}

 

另外一种方法求起始位置

void Maxsum_location(int * arr, int size, int & start, int & end)
{
    int maxSum = -INF;
    int sum = 0;
    for(int i = 0; i < size; ++i)
    {
        if(sum < 0){
            sum = arr[i];
        }else{
            sum += arr[i];
        }
        if(sum > maxSum)
        {
            maxSum = sum;
            end = i;//结束位置
        }
    }
     int tmp=0;int f=0;
     for(int j=end;j>0;j--)
     {
          tmp+=arr[j];
          if(tmp==maxSum)
                 f=j;//起始位置
      }
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值