HDU 5328 Problem Killer(暴力)

Problem Killer

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 3311    Accepted Submission(s): 1102


 

Problem Description

You are a "Problem Killer", you want to solve many problems. 
Now you have n problems, the i-th problem's difficulty is represented by an integer ai (1≤ai≤109).
For some strange reason, you must choose some integer l and r (1≤l≤r≤n), and solve the problems between the l-th and the r-th, and these problems' difficulties must form an AP (Arithmetic Progression) or a GP (Geometric Progression). 
So how many problems can you solve at most?

You can find the definitions of AP and GP by the following links:
https://en.wikipedia.org/wiki/Arithmetic_progression
https://en.wikipedia.org/wiki/Geometric_progression

 

 

Input

The first line contains a single integer T, indicating the number of cases. 
For each test case, the first line contains a single integer n, the second line contains n integers a1,a2,⋯,an. 

T≤104,∑n≤106

 

 

Output

For each test case, output one line with a single integer, representing the answer.

 

 

Sample Input

 

2 5 1 2 3 4 6 10 1 1 1 1 1 1 2 3 4 5

 

 

Sample Output

 

4 6

题意:给你一个序列,让你求最长的连续的等比数列或等差数列。

思路:直接暴力,注意不能开两个数组记录符合条件的序列,会TLE,用两个变量来回倒就可以。

代码:

#include<bits/stdc++.h>
#define inf 0x3f3f3f3f
#define ll long long
using namespace std;
const int maxn=1e6+10;
int n,m;
int a[maxn];
int ans,tmp,cnt;
int main()
{
    int T,cas=1;
    while(scanf("%d",&T)!=EOF)
    {
    while(T--){
        scanf("%d",&n);
    for(int i=1;i<=n;i++) scanf("%d",&a[i]);
    int x,y=-1,z;
    ans=1;
    x=a[1];
    tmp=1;
    for(int i=2;i<=n;i++)
    {
        if(y==-1){y=x;x=a[i];tmp++;ans=max(ans,tmp);}
        else if(((double)a[i]/(double)x)==((double)x/(double)y)){y=x;x=a[i];tmp++;ans=max(ans,tmp);}
        else {tmp=2;y=x;x=a[i];ans=max(ans,tmp);}
    }
    x=a[1];y=-1;
    tmp=1;
    for(int i=2;i<=n;i++)
    {
        if(y==-1){y=x;x=a[i];tmp++;ans=max(ans,tmp);}
        else if(a[i]-x==x-y){y=x;x=a[i];tmp++;ans=max(ans,tmp);}
        else {tmp=2;y=x;x=a[i];ans=max(ans,tmp);}
    }
    printf("%d\n",ans);
    }
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值