手势识别 雷达信号处理与卷积神经网络(1):构建自己的数据集

本文介绍如何利用雷达信号处理创建手势识别数据集,包括图片预处理、生成数据集、保存和检测数据集的步骤。通过命名图片、转换为RGB格式、resize,然后打上标签,最终保存为.h5文件,适用于卷积神经网络模型训练。
摘要由CSDN通过智能技术生成

手势识别 雷达信号处理与卷积神经网络(1):构建自己的数据集

利用摄像头捕捉的画面来做识别,已经取得很大发展,而在环境光照恶劣的地区,雷达信号也许比视频更加鲁棒,采用雷达数据生成图像再用CNN分类,即利用了深度学习的强大能力,又避免了环境的影响。这里是手势识别 雷达信号处理与卷积神经网络 (1),教你如何制作自己的数据集。
我们经常使用开源数据集训练网络,那么当遇到特定的问题,没有合适的开源数据集时,如何获取并制作自己的数据集呢?

一、图片预处理

  • 将图片按种类格式命名

  • 将图片转换成RGB格式

  • 将图片resize到特定大小

二、生成数据集

  • 读取预处理后的图片

  • 给图片打上种类标签

  • 生成数据集和测试集

三、保存和检测数据集

  • 保存为.h5文件

  • 检测.h5数据集

申明

本文原理解释、公式推导及代码部分均由LSayhi完成,允许部分或全部转载,但请注明出处,或联系微信公众号,详细数据及代码可在github查阅。

GitHub:https://github.com/LSayhi/DeepLearning

微信公众号:AI有点可ai(文末附二维码,感谢您的关注)

CSDN博客:https://blog.csdn.net/LSayhi

一、图片预处理

  • 命名图片:制作CNN的数据集,需要图片的分类信息,为了方便编程实现,我们对每张图片按一定格式命名,这个过程可以编程实现,当然也可以在用雷达数据生成图像后直接命名保存。在此文中,我们有四类图片,分别对应四种手势,“按钮、翻转、前后、上下 ”,每种手势40张,因此我们命名为anniu.1.jpeg,qianhou.14.jpeg等,以便后续操作,加入的"."为识别分隔符号,如图1所示:
    在这里插入图片描述
    图1:利用雷达信号处理生成的图像命名示例

  • 将图片转换为RGB格式并Resize到特定大小:因为本文及大部分网络结构都是三通道的,并且对于输入的图像大小可能有不同要求,因此将图片转换成三通道RGB格式和重新设置图片大小是必要的,下面一段代码完整地完成了这一个过程。

import os
from PIL import Image

#转换成三通道并调整大小
def convert_RGB_resize(file_dir,new_dir,width,heigth):
    for filename in os.listdir(file_dir):
        im=Image.open(file_dir+filename).convert("RGB").resize((width,heigth))
        im.save(new_dir+filename)
        #想要保存的路径
    print("已转换RGB格式,图像大小"+"("+str(width)+","+str(heigth)+","+"3"")")


def main():
    file_dir="D:/codes/spyder/radar02/dataset/"#原图像路径
    new_dir ="D:/codes/spyder/radar02/dataset_RGB_Resize/"#保存到新的地址
    width=90
    heigth=90
    #设置调整后的图像大小
    convert_RGB_resize(file_dir,new_dir,width,heigth)


if __name__ == '__main__':
    main()
评论 17
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值