手势识别 雷达信号处理与卷积神经网络(1):构建自己的数据集
利用摄像头捕捉的画面来做识别,已经取得很大发展,而在环境光照恶劣的地区,雷达信号也许比视频更加鲁棒,采用雷达数据生成图像再用CNN分类,即利用了深度学习的强大能力,又避免了环境的影响。这里是手势识别 雷达信号处理与卷积神经网络 (1),教你如何制作自己的数据集。
我们经常使用开源数据集训练网络,那么当遇到特定的问题,没有合适的开源数据集时,如何获取并制作自己的数据集呢?
一、图片预处理
-
将图片按种类格式命名
-
将图片转换成RGB格式
-
将图片resize到特定大小
二、生成数据集
-
读取预处理后的图片
-
给图片打上种类标签
-
生成数据集和测试集
三、保存和检测数据集
-
保存为.h5文件
-
检测.h5数据集
申明
本文原理解释、公式推导及代码部分均由LSayhi完成,允许部分或全部转载,但请注明出处,或联系微信公众号,详细数据及代码可在github查阅。
GitHub:https://github.com/LSayhi/DeepLearning
微信公众号:AI有点可ai(文末附二维码,感谢您的关注)
CSDN博客:https://blog.csdn.net/LSayhi
一、图片预处理
-
命名图片:制作CNN的数据集,需要图片的分类信息,为了方便编程实现,我们对每张图片按一定格式命名,这个过程可以编程实现,当然也可以在用雷达数据生成图像后直接命名保存。在此文中,我们有四类图片,分别对应四种手势,“按钮、翻转、前后、上下 ”,每种手势40张,因此我们命名为anniu.1.jpeg,qianhou.14.jpeg等,以便后续操作,加入的"."为识别分隔符号,如图1所示:
图1:利用雷达信号处理生成的图像命名示例 -
将图片转换为RGB格式并Resize到特定大小:因为本文及大部分网络结构都是三通道的,并且对于输入的图像大小可能有不同要求,因此将图片转换成三通道RGB格式和重新设置图片大小是必要的,下面一段代码完整地完成了这一个过程。
import os
from PIL import Image
#转换成三通道并调整大小
def convert_RGB_resize(file_dir,new_dir,width,heigth):
for filename in os.listdir(file_dir):
im=Image.open(file_dir+filename).convert("RGB").resize((width,heigth))
im.save(new_dir+filename)
#想要保存的路径
print("已转换RGB格式,图像大小"+"("+str(width)+","+str(heigth)+","+"3"")")
def main():
file_dir="D:/codes/spyder/radar02/dataset/"#原图像路径
new_dir ="D:/codes/spyder/radar02/dataset_RGB_Resize/"#保存到新的地址
width=90
heigth=90
#设置调整后的图像大小
convert_RGB_resize(file_dir,new_dir,width,heigth)
if __name__ == '__main__':
main()