Pytorch中lr_scheduler.ReduceLROnPlateau调整学习率

本文介绍了Pytorch中的 ReduceLROnPlateau 调整学习率策略,通过观察loss变化来动态更新学习率,当loss在3个epoch后无明显下降时,会降低学习率10倍。
摘要由CSDN通过智能技术生成

 Pytorch中torch.optim.lr/_scheduler有很多可用于调整学习率的类

笔者最近接触到ReduceLROnPlateau这个类,在此记录下该类的使用方法及作用,作为学习笔记。

该类的源码如下:

class ReduceLROnPlateau(object):
    """Reduce learning rate when a metric has stopped improving.
    Models often benefit from reducing the learning rate by a factor
    of 2-10 once learning stagnates. This scheduler reads a metrics
    quantity and if no improvement is seen for a 'patience' number
    of epochs, the learning rate is reduced.

    Args:
        optimizer (Optimizer): Wrapped optimizer.
        mode (str): One of `min`, `max`. In `min` mode, lr will
            be reduced when the quantity monitored has stopped
            decreasing; in `max` mode it will be reduced when the
            quantity monitored has stopped increasing. Default: 'min'.
        factor (float): Factor by which the learning rate will be
            reduced. new_lr = lr * factor. Default: 0.1.
        patience (int): Number of epochs with no improvement after
            which learning rate will be reduced. For example, if
            `patience = 2`, then we will ignore the first 2 epochs
            with no improvement, and will only decrease the LR after the
            3rd epoch if the loss still hasn't improved then.
            Default: 10.
        threshold (float): Threshold for measuring the new optimum,
            to only focus on significant changes. Default: 1e-4.
        threshold_mode (str): One of `rel`, `abs`. In `rel` mode,
            dynamic_threshold = best * ( 1 + thre
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值