非线性方程的数值解法

本文介绍了求解非线性方程的两种数值方法——不动点迭代法和牛顿法。不动点迭代法通过构造迭代函数找到不动点求解,讨论了其收敛条件和收敛速度。牛顿法则利用泰勒展开线性化方程,具有更快的收敛速度,但对初始值敏感,可通过牛顿下山法改善其稳定性。
摘要由CSDN通过智能技术生成

设有一个单变量的非线性方程 f ( x ) = 0 f(x) = 0 f(x)=0,往往这样的方程没有直接的求根公式,因此没有直接方法计算,只能使用迭代法来求数值解,二分法就是这样的一种方法,这里介绍一下其他的几种方法

不动点迭代法

我们可以将非线性方程 f ( x ) = 0 f(x) = 0 f(x)=0改写为 x = ϕ ( x ) x = \phi(x) x=ϕ(x),满足这样式子的x称作 ϕ ( x ) \phi(x) ϕ(x)的一个不动点,求 f ( x ) f(x) f(x)的零点就等价于求 ϕ ( x ) \phi(x) ϕ(x)的不动点,可以选定一个初始值 x 0 x_0 x0代入等式的右侧,然后一直以 x k + 1 = ϕ ( x k ) x_{k+1} = \phi(x_k) xk+1=ϕ(xk)的方式迭代下去,这样可以获得一个序列,如果序列 { x k } \{x_k\} { xk}有极限: lim ⁡ k − > ∞ x k = x ∗ \lim_{k->\infty}x_k = x^* k>limxk=x则称该迭代法为不动点迭代法。
我们可以用几何图像来表达不动点迭代法的思想:
在这里插入图片描述
如图,选定了初始值 x 0 x_0 x0,然后计算出 ϕ ( x 0 ) \phi(x_0) ϕ(x0)得到了 P 0 P_0 P0,然后再过 ( x 0 , P 0 ) (x_0,P_0) (x0,P0)引一条与x轴平行的直线,它与直线 y = x y=x y=x交于点 Q 1 ( P 0 , P 0 ) Q_1(P_0,P_0) Q1(P0,P0),然令 x 1 = P 0 x_1 = P_0 x1=P0,沿着图上的路径继续走下去,可以发现最终点列 { P k } \{P_k\} { Pk}会收敛到 P ∗ P^* P,也就是最终迭代的值 x k x_k xk会收敛到想要的 x ∗ x^* x

尽管在这个图上最终的结果是收敛的,但是这并不意味着采用不动点迭代法一定是收敛的
在这里插入图片描述
例如在这个图上,用不动点迭代法就是不收敛的,点列 { P k } \{P_k\} { Pk}会一直往偏离 P ∗ P^* P的方向移动。

不动点的存在性和迭代的收敛性
首先考虑 ϕ ( x ) \phi(x) ϕ(x) [ a , b ] [a,b] [a,b]上不动点的存在性和唯一性:
定理1:若 ϕ ( x ) \phi(x) ϕ(x) [ a , b ] [a,b] [a,b]上满足:
(1)对于任意的 x ∈ C [ a , b ] x∈C[a,b] xC[a,b],都有 a &lt; = ϕ ( x ) &lt; = b a&lt;=\phi(x)&lt;=b a<=ϕ(x)<=b
(2)存在正常数 L &lt; 1 L &lt; 1 L<1,使对任意的 x , y ∈ [ a , b ] x,y∈[a,b] x,y[a,b],都有 ∣ ϕ ( x ) − ϕ ( y ) ∣ &lt; = L ∣ x − y ∣ |\phi(x)-\phi(y)|&lt;=L|x-y| ϕ(x)ϕ(y)<=Lxy
那么 ϕ ( x ) \phi(x) ϕ(x) [ a , b ] [a,b] [a,b]上存在唯一的不动点 x ∗ x^* x

证:
ϕ ( a ) = a \phi(a) = a ϕ(a)=a ϕ ( b ) = b \phi(b) = b ϕ(b)=b 那么不动点显然存在
ϕ ( a ) &gt; a \phi(a) &gt; a ϕ(a)>a ϕ ( b ) &lt; b \phi(b) &lt; b ϕ(b)<b,则设函数 f ( x ) = ϕ ( x ) − x f(x) = \phi(x) - x f(x)=ϕ(x)x
由已知有 f ( a ) = ϕ ( a ) − a &gt; 0 f(a) = \phi(a) - a &gt; 0 f(a)=ϕ(a)a>0 f ( b ) = ϕ ( b ) − b &lt; 0 f(b) = \phi(b) - b &lt; 0 f(b)=ϕ(b)b<0,由连续函数的性质可知,存在 x ∗ ∈ ( a , b ) x^*∈(a,b) x(a,b)使得 f ( x ∗ ) = 0 f(x^*) = 0 f(x)=0
因此不动点一定存在,下面证其唯一性:
x 1 ∗ , x 2 ∗ x_1^*,x_2^* x1x2都是 ϕ ( x ) \phi(x) ϕ(x) ( a , b ) (a,b) (a,b)上的不动点,则由条件(2)可知: ∣ x 1 ∗ − x 2 ∗ ∣ = ∣ ϕ ( x 1 ∗ ) − ϕ ( x 2 ∗ ) ∣ &lt; L ∣ x 1 ∗ − x 2 ∗ ∣ &lt; ∣ x 1 ∗ − x 2 ∗ ∣ |x_1^*-x_2^*| = |\phi(x_1*) - \phi(x_2*)| &lt; L|x_1^*-x_2^*| &lt;|x_1^*-x_2^*| x1x2=ϕ(x1)ϕ(x2)<Lx1x2<x1x2 ,矛盾
因此不动点唯一。

定理2
ϕ ( x ) ∈ C [ a , b ] \phi(x)∈C[a,b] ϕ(x)C[a,b]满足定理1中的两个条件,则对于任意选定的 x 0 ∈ [ a , b ] x_0∈[a,b]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值