前言
于2021年十一月参加电赛国赛,获得国二,由于F题和智能车竞赛的智慧视觉组的内容高度重合,正好我们也参加了智能车该组别,使准备弃赛的我们还是准备参加混完比赛,现将代码开源。
gitee开源链接
一、比赛情况
一共五个题,我们做了四个半,最后半个是因为东西不够,不能去做了。但是由于一开始的方案确定有缺陷,导致整车的鲁棒性太差,只完成了第一题第二题,第三题停车时冲出赛道零分,第四题完成了一半,然后第五题没做完。
二、整车介绍
由于比赛内容和智能车高度重合,所以我们就直接将智能车的套件用于比赛,两个小车都是三轮车,赛道识别部分使用的摄像头识别,数字识别部分用的是OpenARTmini,一个和openmv一样的模块,主控采用的NXP的RT1064(实在是大财小用了)。外加编码器采集速度,陀螺仪方向校准,红外检测药品是否放入。(主要是没想到是要做两个小车,实验室储备不够,没来的及去买,第二个小车上就没能装上OpenART).
三、赛道部分
采集的图像使用CANNY算子去处理后去采集中间的红线,转向时使用陀螺仪去确定转向的角度,但是我们的小车的电机是使用的是直流电机,速度快,但是精确度不高,这就导致了整车的鲁棒性很差,比赛时,小车冲出了赛道,如果使用步进电机的话,就会很好控制(可惜没有准备足够的材料)。
四、识别部分
使用了神经网络去识别,先将数据集进行数据增强,搭建一个模型,然后放到服务器上去训练,然后将再将训练好的模型轻量化再部署的OpenART上,识别时,先找到矩形框,在将矩形框中的内容进行识别,在识别时,由于整车高度有限制,如果车身不正的话,在十字路口,就很容易看不到所有的数字,我们采取的方案是降速运行,保证姿态稳定(降速大法好)。