sklearn.discriminant_analysis.LinearDiscriminantAnalysis 笔记

(2018第一篇随笔)

承接上个博客,这次来读sklearnpython代码说明以及源码

/*******************************************************代码说明*************************************************************/

   

class sklearn.discriminant_analysis.LinearDiscriminantAnalysis(solver='svd', shrinkage=None, priors=None, n_components=None, store_covariance=False, tol=0.0001)

[source code]

   

  • 类的参数

       

    Solver:string,可选

    有三种参数值:

    'svd':奇异值分解(默认设置)。不计算协方差矩阵,推荐在数据维数较大时使用

    'lsqr':最小平方解,可以进行shrinkage

    'eigen':特征值分解,可以进行shrinkage

       

    Shrinkage:string/float,可选

    收缩参数,有三种可能:

    None:不进行收缩(默认设置)

    'auto':根据Ledoit-Wolf lemma自动选择收缩

    0-1之间的浮点数:固定的收缩参数

    (注意收缩只在'lsqr''eigen'时才有效)

       

    Priors:array数组(大小为类别数),可选。类先验概率

       

    n_components:整形,可选

    维数约减的维数(<类别数-1)

       

    Store_covariance:bool,可选

    计算类协方差矩阵(默认为false),只用于'svd'的情况

       

    Tol:浮点数,可选(默认1.0e-4)

    秩估计的阈值在'svd'

       

  • 类的属性

       

    Coef_:array数组,大小为(#features)或(#classes,#features)

    (多个)权值向量

       

    Intercept:array数组,大小(#features

    截距

       

    Covariance_:array-like? 大小(#features*#features

    所有类的协方差矩阵

       

    Explained_variance_ratio_:array数组,大小(n_components,

    每个选定components解释的方差比。若n_components未设定,那么所有的components组件被存储而且被解释的方差之和为1。只在'svd'or'eigen'时可用

       

    Means_:arrray-like,大小(#类别,#特征)

    类均值

       

    Priors_:array-like,大小(#类别)

    类的先验,和为1

       

    Scalings_:array-like,大小(rank秩,类别数-1

    由类质心张成空间中特征的规模scaling?

    (Scaling of the features in the space spanned by the class centroids.)

       

    Xbar_:array-like,大小(#features

    所有样本的均值

       

    Classes_:array-like,大小(#cl

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值