Pytorch迁移学习

在实际应用中,很少有人从头开始训练整个卷积网络,因为很难获得足够多的数据。因此,常用的做法是使用在庞大数据集上训练好的模型作为预训练模型,用来初始化网络,或者提取特征。

迁移学习的主要应用场景有以下两种:

  1. 微调模型。使用预训练模型初始化网络
  2. 特征提取。除最后一层全连接层之外,固定网络中其他层的权重,最后的全连接层权重随机初始化,这一层的参数会得到训练。

导包

from __future__ import print_function, division

import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
import numpy as np
import torchvision
from torchvision import datasets, models, transforms
import matplotlib.pyplot as plt
import time
import os
import copy

plt.ion()   # interactive mode

数据导入

使用torchvisiontorch.utils.data来导入数据。

训练一个模型对蚂蚁、蜜蜂进行分类,训练图片每类有120张图片,75张验证图片,数据集非常小,因此使用迁移学习。

# Data augmentation and normalization for training
# Just normalization for validation
data_transforms = {
    'train': transforms.Compose([
        transforms.RandomResizedCrop(224),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ]),
    'val': transforms.Compose([
        transforms.Resize(256),
        transforms.CenterCrop(224),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ]),
}

data_dir = 'data/hymenoptera_data'
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x),
                                          data_transforms[x])
                  for x in ['train', 'val']}
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=4,
                                             shuffle=True, num_workers=4)
              for x in ['train', 'val']}
dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']}
class_names = image_datasets['train'].classes

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

训练图片展示

def imshow(inp, title=None):
    """Imshow for Tensor."""
    inp = inp.numpy().transpose((1, 2, 0))
    mean = np.array([0.485, 0.456, 0.406])
    std = np.array([0.229, 0.224, 0.225])
    inp = std * inp + mean
    inp = np.clip(inp, 0, 1)
    plt.imshow(inp)
    if title is not None:
        plt.title(title)
    plt.pause(0.001)  # pause a bit so that plots are updated


# Get a batch of training data
inputs, classes = next(iter(dataloaders['train']))

# Make a grid from batch
out = torchvision.utils.make_grid(inputs)

imshow(out, title=[class_names[x] for x in classes])

在这里插入图片描述

训练模型

  • 调整学习率
  • 保存最佳模型

下面的schedulertorch.optim.lr_scheduler中的学习率调整器。

def train_model(model, criterion, optimizer, scheduler, num_epochs=25):
    since = time.time()

    best_model_wts = copy.deepcopy(model.state_dict())
    best_acc = 0.0

    for epoch in range(num_epochs):
        print('Epoch {}/{}'.format(epoch, num_epochs - 1))
        print('-' * 10)

        # Each epoch has a training and validation phase
        for phase in ['train', 'val']:
            if phase == 'train':
                scheduler.step()
                model.train()  # Set model to training mode
            else:
                model.eval()  # Set model to evaluate mode

            running_loss = 0.0
            running_corrects = 0

            class_total = list(0. for i in range(NUM_CLASS))
            class_correct = list(0. for i in range(NUM_CLASS))

            # Iterate over data.
            for inputs, labels in dataloaders[phase]:
                inputs = inputs.to(device)
                labels = labels.to(device)

                # zero the parameter gradients
                optimizer.zero_grad()
                # forward
                # track history if only in train
                with torch.set_grad_enabled(phase=='train'):
                    outputs = model(inputs)
                    _, preds = torch.max(outputs, 1)
                    loss = criterion(outputs, labels)

                    # backward + optimize only if in training phase
                    if phase == 'train':
                        loss.backward()
                        optimizer.step()
                # statistics
                running_loss += loss.item() * inputs.size(0)
                running_corrects += torch.sum(preds == labels.data)

                c = (preds == labels.data).squeeze()
                for label, pre in zip(labels.data, c):
                    class_correct[label] += pre.item()
                    class_total[label] += 1

            epoch_loss = running_loss / dataset_sizes[phase]
            epoch_acc = running_corrects.double() / dataset_sizes[phase]
            print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc))

            for i in range(NUM_CLASS):
                print('Accuracy of %5s : %2d %%' % (
                    class_names[i], 100 * class_correct[i] / class_total[i]))

            # deep copy the model
            if phase == 'val' and epoch_acc > best_acc:
                best_acc = epoch_acc
                best_model_wts = copy.deepcopy(model.state_dict())
        print()

    time_elapsed = time.time() - since
    print('Training complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))
    print('Best val Acc: {:4f}'.format(best_acc))

    # load best model weights
    model.load_state_dict(best_model_wts)
    return model

可视化预测结果

def visualize_model(model, num_images=6):
    was_training = model.training
    model.eval()
    images_so_far = 0
    fig = plt.figure()

    with torch.no_grad():
        for i, (inputs, labels) in enumerate(dataloaders['val']):
            inputs = inputs.to(device)
            labels = labels.to(device)

            outputs = model(inputs)
            _, preds = torch.max(outputs, 1)

            for j in range(inputs.size()[0]):
                images_so_far += 1
                ax = plt.subplot(num_images//2, 2, images_so_far)
                ax.axis('off')
                ax.set_title('predicted: {}'.format(class_names[preds[j]]))
                imshow(inputs.cpu().data[j])

                if images_so_far == num_images:
                    model.train(mode=was_training)
                    return
        model.train(mode=was_training)
finetuning 网络

加载预训练模型,重置最后一层全连接网络。

model_ft = models.vgg19_bn(pretrained=True)
num_ftrs = model_ft.classifier[6].in_features
model_ft.classifier[6] = nn.Linear(num_ftrs, 2)

model_ft = model_ft.to(device)

criterion = nn.CrossEntropyLoss()

# Observe that all parameters are being optimized
optimizer_ft = optim.SGD(model_ft.parameters(), lr=0.001, momentum=0.9)

# Decay LR by a factor of 0.1 every 7 epochs
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)
训练并评估
model_ft = train_model(model_ft, criterion, optimizer_ft, exp_lr_scheduler,
                       num_epochs=25)
Epoch 0/24
----------
train Loss: 0.4654 Acc: 0.7582
Accuracy of  ants : 79 %
Accuracy of  bees : 71 %
val Loss: 0.2124 Acc: 0.9150
Accuracy of  ants : 82 %
Accuracy of  bees : 100 %

Epoch 1/24
----------
train Loss: 0.3709 Acc: 0.8484
Accuracy of  ants : 82 %
Accuracy of  bees : 87 %
val Loss: 0.1678 Acc: 0.9281
Accuracy of  ants : 95 %
Accuracy of  bees : 91 %

Epoch 2/24
----------
train Loss: 0.2731 Acc: 0.8730
Accuracy of  ants : 88 %
Accuracy of  bees : 85 %
val Loss: 0.1629 Acc: 0.9085
Accuracy of  ants : 95 %
Accuracy of  bees : 87 %

Epoch 3/24
----------
train Loss: 0.2576 Acc: 0.8852
Accuracy of  ants : 91 %
Accuracy of  bees : 85 %
val Loss: 0.1792 Acc: 0.9216
Accuracy of  ants : 87 %
Accuracy of  bees : 97 %

Epoch 4/24
----------
train Loss: 0.1734 Acc: 0.9303
Accuracy of  ants : 92 %
Accuracy of  bees : 93 %
val Loss: 0.1090 Acc: 0.9542
Accuracy of  ants : 95 %
Accuracy of  bees : 96 %

Epoch 5/24
----------
train Loss: 0.1955 Acc: 0.9221
Accuracy of  ants : 92 %
Accuracy of  bees : 91 %
val Loss: 0.1055 Acc: 0.9477
Accuracy of  ants : 95 %
Accuracy of  bees : 95 %

Epoch 6/24
----------
train Loss: 0.1743 Acc: 0.9098
Accuracy of  ants : 94 %
Accuracy of  bees : 87 %
val Loss: 0.1086 Acc: 0.9412
Accuracy of  ants : 94 %
Accuracy of  bees : 95 %

Epoch 7/24
----------
train Loss: 0.1719 Acc: 0.9426
Accuracy of  ants : 93 %
Accuracy of  bees : 95 %
val Loss: 0.1130 Acc: 0.9477
Accuracy of  ants : 95 %
Accuracy of  bees : 95 %

Epoch 8/24
----------
train Loss: 0.1358 Acc: 0.9590
Accuracy of  ants : 97 %
Accuracy of  bees : 94 %
val Loss: 0.1102 Acc: 0.9412
Accuracy of  ants : 95 %
Accuracy of  bees : 93 %

Epoch 9/24
----------
train Loss: 0.1995 Acc: 0.9057
Accuracy of  ants : 93 %
Accuracy of  bees : 87 %
val Loss: 0.1068 Acc: 0.9477
Accuracy of  ants : 94 %
Accuracy of  bees : 96 %

Epoch 10/24
----------
train Loss: 0.2080 Acc: 0.8934
Accuracy of  ants : 86 %
Accuracy of  bees : 92 %
val Loss: 0.0920 Acc: 0.9477
Accuracy of  ants : 97 %
Accuracy of  bees : 93 %

Epoch 11/24
----------
train Loss: 0.1665 Acc: 0.9385
Accuracy of  ants : 94 %
Accuracy of  bees : 93 %
val Loss: 0.0982 Acc: 0.9477
Accuracy of  ants : 94 %
Accuracy of  bees : 96 %

Epoch 12/24
----------
train Loss: 0.1357 Acc: 0.9426
Accuracy of  ants : 95 %
Accuracy of  bees : 93 %
val Loss: 0.0993 Acc: 0.9412
Accuracy of  ants : 94 %
Accuracy of  bees : 95 %

Epoch 13/24
----------
train Loss: 0.1355 Acc: 0.9549
Accuracy of  ants : 95 %
Accuracy of  bees : 95 %
val Loss: 0.1007 Acc: 0.9477
Accuracy of  ants : 95 %
Accuracy of  bees : 95 %

Epoch 14/24
----------
train Loss: 0.2216 Acc: 0.9057
Accuracy of  ants : 90 %
Accuracy of  bees : 90 %
val Loss: 0.0976 Acc: 0.9477
Accuracy of  ants : 95 %
Accuracy of  bees : 95 %

Epoch 15/24
----------
train Loss: 0.1494 Acc: 0.9303
Accuracy of  ants : 93 %
Accuracy of  bees : 92 %
val Loss: 0.1100 Acc: 0.9412
Accuracy of  ants : 95 %
Accuracy of  bees : 93 %

Epoch 16/24
----------
train Loss: 0.1786 Acc: 0.9303
Accuracy of  ants : 93 %
Accuracy of  bees : 92 %
val Loss: 0.1069 Acc: 0.9412
Accuracy of  ants : 95 %
Accuracy of  bees : 93 %

Epoch 17/24
----------
train Loss: 0.1210 Acc: 0.9508
Accuracy of  ants : 97 %
Accuracy of  bees : 92 %
val Loss: 0.0990 Acc: 0.9477
Accuracy of  ants : 95 %
Accuracy of  bees : 95 %

Epoch 18/24
----------
train Loss: 0.1851 Acc: 0.9180
Accuracy of  ants : 89 %
Accuracy of  bees : 94 %
val Loss: 0.0903 Acc: 0.9608
Accuracy of  ants : 95 %
Accuracy of  bees : 97 %

Epoch 19/24
----------
train Loss: 0.2010 Acc: 0.9221
Accuracy of  ants : 95 %
Accuracy of  bees : 89 %
val Loss: 0.1039 Acc: 0.9412
Accuracy of  ants : 95 %
Accuracy of  bees : 93 %

Epoch 20/24
----------
train Loss: 0.1388 Acc: 0.9385
Accuracy of  ants : 93 %
Accuracy of  bees : 94 %
val Loss: 0.1145 Acc: 0.9477
Accuracy of  ants : 97 %
Accuracy of  bees : 93 %

Epoch 21/24
----------
train Loss: 0.1390 Acc: 0.9426
Accuracy of  ants : 94 %
Accuracy of  bees : 94 %
val Loss: 0.1068 Acc: 0.9477
Accuracy of  ants : 94 %
Accuracy of  bees : 96 %

Epoch 22/24
----------
train Loss: 0.1254 Acc: 0.9590
Accuracy of  ants : 94 %
Accuracy of  bees : 97 %
val Loss: 0.1016 Acc: 0.9477
Accuracy of  ants : 97 %
Accuracy of  bees : 93 %

Epoch 23/24
----------
train Loss: 0.1194 Acc: 0.9467
Accuracy of  ants : 92 %
Accuracy of  bees : 96 %
val Loss: 0.1058 Acc: 0.9412
Accuracy of  ants : 95 %
Accuracy of  bees : 93 %

Epoch 24/24
----------
train Loss: 0.1457 Acc: 0.9467
Accuracy of  ants : 92 %
Accuracy of  bees : 96 %
val Loss: 0.1034 Acc: 0.9477
Accuracy of  ants : 94 %
Accuracy of  bees : 96 %

Training complete in 4m 24s
Best val Acc: 0.960784
visualize_model(model_ft)

在这里插入图片描述

预训练模型作为特征提取器

在这里需要固定除最后一层外其他所有层,使用requires_grad == False 来固定参数,这样在反向传播的时候不会计算梯度。

model_conv = torchvision.models.resnet18(pretrained=True)
for param in model_conv.parameters():
    param.requires_grad = False

# Parameters of newly constructed modules have requires_grad=True by default
num_ftrs = model_conv.fc.in_features
model_conv.fc = nn.Linear(num_ftrs, 2)

model_conv = model_conv.to(device)

criterion = nn.CrossEntropyLoss()

# Observe that only parameters of final layer are being optimized as
# opposed to before.
optimizer_conv = optim.SGD(model_conv.classifier[6].parameters(), lr=0.001, momentum=0.9)

# Decay LR by a factor of 0.1 every 7 epochs
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_conv, step_size=7, gamma=0.1)
训练并评估
model_conv = train_model(model_conv, criterion, optimizer_conv,
                         exp_lr_scheduler, num_epochs=25)
Epoch 0/24
----------
train Loss: 0.5984 Acc: 0.7008
Accuracy of  ants : 70 %
Accuracy of  bees : 69 %
val Loss: 0.1762 Acc: 0.9281
Accuracy of  ants : 87 %
Accuracy of  bees : 98 %

Epoch 1/24
----------
train Loss: 0.5020 Acc: 0.7746
Accuracy of  ants : 78 %
Accuracy of  bees : 76 %
val Loss: 0.2006 Acc: 0.9346
Accuracy of  ants : 94 %
Accuracy of  bees : 93 %

Epoch 2/24
----------
train Loss: 0.3177 Acc: 0.8607
Accuracy of  ants : 86 %
Accuracy of  bees : 85 %
val Loss: 0.1839 Acc: 0.9281
Accuracy of  ants : 94 %
Accuracy of  bees : 92 %

Epoch 3/24
----------
train Loss: 0.3501 Acc: 0.8730
Accuracy of  ants : 87 %
Accuracy of  bees : 86 %
val Loss: 0.1481 Acc: 0.9542
Accuracy of  ants : 95 %
Accuracy of  bees : 96 %

Epoch 4/24
----------
train Loss: 0.3446 Acc: 0.8566
Accuracy of  ants : 85 %
Accuracy of  bees : 85 %
val Loss: 0.3494 Acc: 0.9020
Accuracy of  ants : 81 %
Accuracy of  bees : 98 %

Epoch 5/24
----------
train Loss: 0.3998 Acc: 0.8238
Accuracy of  ants : 79 %
Accuracy of  bees : 85 %
val Loss: 0.2495 Acc: 0.8693
Accuracy of  ants : 97 %
Accuracy of  bees : 79 %

Epoch 6/24
----------
train Loss: 0.5243 Acc: 0.7992
Accuracy of  ants : 83 %
Accuracy of  bees : 76 %
val Loss: 0.1553 Acc: 0.9542
Accuracy of  ants : 92 %
Accuracy of  bees : 98 %

Epoch 7/24
----------
train Loss: 0.2630 Acc: 0.8975
Accuracy of  ants : 87 %
Accuracy of  bees : 91 %
val Loss: 0.1181 Acc: 0.9673
Accuracy of  ants : 97 %
Accuracy of  bees : 97 %

Epoch 8/24
----------
train Loss: 0.3254 Acc: 0.8770
Accuracy of  ants : 86 %
Accuracy of  bees : 88 %
val Loss: 0.1476 Acc: 0.9608
Accuracy of  ants : 95 %
Accuracy of  bees : 97 %

Epoch 9/24
----------
train Loss: 0.3085 Acc: 0.8811
Accuracy of  ants : 91 %
Accuracy of  bees : 85 %
val Loss: 0.1379 Acc: 0.9673
Accuracy of  ants : 97 %
Accuracy of  bees : 97 %

Epoch 10/24
----------
train Loss: 0.3302 Acc: 0.8730
Accuracy of  ants : 89 %
Accuracy of  bees : 85 %
val Loss: 0.1628 Acc: 0.9673
Accuracy of  ants : 95 %
Accuracy of  bees : 98 %

Epoch 11/24
----------
train Loss: 0.2677 Acc: 0.8770
Accuracy of  ants : 85 %
Accuracy of  bees : 90 %
val Loss: 0.1374 Acc: 0.9673
Accuracy of  ants : 97 %
Accuracy of  bees : 97 %

Epoch 12/24
----------
train Loss: 0.2701 Acc: 0.8852
Accuracy of  ants : 89 %
Accuracy of  bees : 87 %
val Loss: 0.1368 Acc: 0.9673
Accuracy of  ants : 97 %
Accuracy of  bees : 97 %

Epoch 13/24
----------
train Loss: 0.2253 Acc: 0.8852
Accuracy of  ants : 85 %
Accuracy of  bees : 91 %
val Loss: 0.1350 Acc: 0.9673
Accuracy of  ants : 97 %
Accuracy of  bees : 97 %

Epoch 14/24
----------
train Loss: 0.2009 Acc: 0.9180
Accuracy of  ants : 93 %
Accuracy of  bees : 90 %
val Loss: 0.1335 Acc: 0.9608
Accuracy of  ants : 97 %
Accuracy of  bees : 96 %

Epoch 15/24
----------
train Loss: 0.3129 Acc: 0.8689
Accuracy of  ants : 86 %
Accuracy of  bees : 86 %
val Loss: 0.1288 Acc: 0.9673
Accuracy of  ants : 97 %
Accuracy of  bees : 97 %

Epoch 16/24
----------
train Loss: 0.3808 Acc: 0.8320
Accuracy of  ants : 83 %
Accuracy of  bees : 82 %
val Loss: 0.1517 Acc: 0.9477
Accuracy of  ants : 97 %
Accuracy of  bees : 93 %

Epoch 17/24
----------
train Loss: 0.2780 Acc: 0.8770
Accuracy of  ants : 89 %
Accuracy of  bees : 85 %
val Loss: 0.1363 Acc: 0.9673
Accuracy of  ants : 97 %
Accuracy of  bees : 97 %

Epoch 18/24
----------
train Loss: 0.1963 Acc: 0.9098
Accuracy of  ants : 91 %
Accuracy of  bees : 90 %
val Loss: 0.1537 Acc: 0.9673
Accuracy of  ants : 97 %
Accuracy of  bees : 97 %

Epoch 19/24
----------
train Loss: 0.3126 Acc: 0.8730
Accuracy of  ants : 84 %
Accuracy of  bees : 90 %
val Loss: 0.1336 Acc: 0.9608
Accuracy of  ants : 95 %
Accuracy of  bees : 97 %

Epoch 20/24
----------
train Loss: 0.3448 Acc: 0.8770
Accuracy of  ants : 87 %
Accuracy of  bees : 87 %
val Loss: 0.1428 Acc: 0.9673
Accuracy of  ants : 95 %
Accuracy of  bees : 98 %

Epoch 21/24
----------
train Loss: 0.2615 Acc: 0.9057
Accuracy of  ants : 94 %
Accuracy of  bees : 86 %
val Loss: 0.1276 Acc: 0.9673
Accuracy of  ants : 97 %
Accuracy of  bees : 97 %

Epoch 22/24
----------
train Loss: 0.3990 Acc: 0.8361
Accuracy of  ants : 82 %
Accuracy of  bees : 85 %
val Loss: 0.1467 Acc: 0.9673
Accuracy of  ants : 95 %
Accuracy of  bees : 98 %

Epoch 23/24
----------
train Loss: 0.2309 Acc: 0.9180
Accuracy of  ants : 91 %
Accuracy of  bees : 92 %
val Loss: 0.1301 Acc: 0.9673
Accuracy of  ants : 97 %
Accuracy of  bees : 97 %

Epoch 24/24
----------
train Loss: 0.2305 Acc: 0.9139
Accuracy of  ants : 92 %
Accuracy of  bees : 90 %
val Loss: 0.1328 Acc: 0.9673
Accuracy of  ants : 97 %
Accuracy of  bees : 97 %

Training complete in 2m 45s
Best val Acc: 0.967320
visualize_model(model_ft)

在这里插入图片描述
扫码关注微信公众号:机器工匠,回复关键字”pytorch迁移学习“获取代码和数据。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值