文章目录
深度学习模型部署与优化:Jetson设备上的YOLOv5、HRNet与TensorRT应用教程

引言
随着人工智能和深度学习的快速发展,越来越多的边缘计算设备开始应用于智能监控、自动驾驶、智能家居等领域。NVIDIA Jetson系列(如Jetson Nano和Jetson NX)为这些应用提供了高效的硬件平台。借助TensorRT、ONNX和Docker等工具,开发者可以在Jetson平台上部署高效的深度学习推理模型。
本文将详细介绍如何在NVIDIA Jetson平台(包括Jetson Nano和Jetson NX)上部署YOLOv5与HRNet等深度学习模型,并使用TensorRT优化推理性能,最终实现实时目标检测和姿态估计任务。通过这篇教程,你将学会如何将PyTorch训练的模型转换为ONNX格式,如何使用TensorRT优化推理过程,以及如何将这些模型应用于实时视频流中。
一、Jetson设备概述与环境准备
1.1 Jetson平台硬件介绍
NVIDIA Jetson系列设备(如Jetson Nano和Jetson NX)专为边缘计算和AI应用设计,提供强大的GPU支持和高效的
Jetson设备上YOLOv5与HRNet模型部署优化
订阅专栏 解锁全文
100

被折叠的 条评论
为什么被折叠?



