「矩阵快速幂」学习笔记

d a t e : 2023.1.10 date:2023.1.10 date:2023.1.10

如果觉得好就给个赞吧
博客没有赞,作者两行泪


先放道模版题
P3390 【模板】矩阵快速幂


1.认识矩阵

矩阵是一个数字阵列,一个二维数组, n n n m m m 列的阵列称为 n × m n \times m n×m 矩阵。如果 n = m n=m n=m 则称为方阵。

2.矩阵乘法

矩阵乘法中第一个矩阵的列要等于第二个矩阵的行,两个大小分别为 m × n m \times n m×n n × p n \times p n×p 的矩阵 A , B A, B A,B 相乘的结果为一个大小为 m × p m \times p m×p 的矩阵。将结果矩阵记作 C C C,则

c i j = ∑ k = 1 n a i k b k j , ( 1 ≤ i ≤ m ,  1 ≤ j ≤ p ) c_{i j}=\sum_{k=1}^{n}a_{i k} b_{k j} \text{,\qquad($1≤i≤m$, $1≤j≤p$)} cij=k=1naikbkj,(1im, 1jp)
可以证明,矩阵乘法满足结合律,即 ( A B ) C = A ( B C ) (AB)C=A(BC) (AB)C=A(BC)

这里介绍一个特殊的矩阵——单位矩阵

单位矩阵,除了对角线为1,其他位置为0的矩阵。类似乘法中的1。 如下

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

任何一个矩阵乘上一个单位矩阵都保持不变。单位矩阵在矩阵快速幂中有应用。

3.矩阵快速幂

如果理解了矩阵乘法,那么快速幂也就很简单了,就是在快速幂的基础上改成矩阵就行了。

献上代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#define int long long
const int N = 105;
const int mod = 1e9+7;
int n,k;
struct Matrix {
    int m[N][N];
    Matrix() { memset(m, 0, sizeof(m)); }
};
Matrix mul(Matrix a, Matrix b) {
    Matrix c;
    for(int i=1;i<=n;i++) {
        for(int j=1;j<=n;j++) {
            for(int k=1;k<=n;k++) {
                c.m[i][j]=(c.m[i][j]+(a.m[i][k]*b.m[k][j])%mod)%mod;
            }
        }
    }
    return c;
}
Matrix qpow(Matrix a, long long b) {
    Matrix c;
    for(int i=1;i<=n;i++) c.m[i][i]=1;
    while(b) {
        if(b&1) c=mul(c,a);
        a=mul(a,a);
        b>>=1;
    }
    return c;
}
Matrix a;
signed main() {
    scanf("%lld%lld", &n, &k);
    for(int i=1;i<=n;i++) {
        for(int j=1;j<=n;j++) scanf("%lld", &a.m[i][j]);
    }
    a=qpow(a,k);
    for(int i=1;i<=n;i++) {
        for(int j=1;j<=n;j++) printf("%lld ", a.m[i][j]);
        printf("\n");
    }
}
  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值