数列
首先明确数列的定义
无
穷
多
个
数
按
次
序
一
个
接
一
个
地
排
列
下
去
,
就
构
成
一
个
数
列
。
无穷多个数按次序一个接一个地排列下去,就构成一个数列。
无穷多个数按次序一个接一个地排列下去,就构成一个数列。
数列的一般项记作
{
x
n
}
{x_n}
{xn}
极限定义
假设一个数列为
{
1
n
}
{\frac{1}{n}}
{n1},那么当
n
n
n越大,它就越接近0,所以我们说数列
{
1
n
}
{\frac{1}{n}}
{n1}的极限为
0
0
0,下面给出了数列极限的定义
设
{
x
n
}
是
一
个
数
列
,
a
是
实
数
,
如
果
对
任
意
给
定
的
ε
>
0
,
总
存
在
一
个
正
整
数
N
,
当
n
>
N
时
,
都
有
∣
x
n
−
a
∣
<
ε
,
我
们
就
称
a
是
数
列
{
x
n
}
的
极
限
,
或
者
称
数
列
{
x
n
}
收
敛
,
且
收
敛
于
a
,
记
为
设{x_n}是一个数列,a是实数,如果对任意给定的\varepsilon>0,总存在一个正整数N,当n>N时,都有|x_n-a|<\varepsilon,我们就称a是数列{x_n}的极限,或者称数列{x_n}收敛,且收敛于a,记为
设{xn}是一个数列,a是实数,如果对任意给定的ε>0,总存在一个正整数N,当n>N时,都有∣xn−a∣<ε,我们就称a是数列{xn}的极限,或者称数列{xn}收敛,且收敛于a,记为
lim
n
→
∞
x
n
=
a
\lim\limits_{n\rarr\infin}x_n=a
n→∞limxn=a
特
别
地
,
当
a
=
0
时
,
这
种
数
列
被
称
为
无
穷
小
量
。
我
们
称
没
有
极
限
的
数
列
是
发
散
的
。
特别地,当a=0时,这种数列被称为无穷小量。我们称没有极限的数列是发散的。
特别地,当a=0时,这种数列被称为无穷小量。我们称没有极限的数列是发散的。
数列极限有一些十分重要的性质:
- 若 lim n → ∞ x n = a , lim n → ∞ y n = b , 且 a > b , 则 总 存 在 正 整 数 N , 当 n > N 时 , 不 等 式 x n > y n 成 立 若\lim\limits_{n\rarr\infin}x_n=a,\lim\limits_{n\rarr\infin}y_n=b,且a>b,则总存在正整数N,当n>N时,不等式x_n>y_n成立 若n→∞limxn=a,n→∞limyn=b,且a>b,则总存在正整数N,当n>N时,不等式xn>yn成立
- 若 数 列 { x n } 收 敛 , 则 它 的 极 限 是 唯 一 的 若数列{x_n}收敛,则它的极限是唯一的 若数列{xn}收敛,则它的极限是唯一的
- 若 存 在 正 整 数 N , 当 n > N 时 , 有 x n ⩽ y n ⩽ z n , 且 lim n → ∞ x n = lim n → ∞ z n = a , 则 lim n → ∞ y n = a 若存在正整数N,当n>N时,有x_n\leqslant{y_n}\leqslant{z_n},且\lim\limits_{n\rarr\infin}x_n=\lim\limits_{n\rarr\infin}z_n=a,则\lim\limits_{n\rarr\infin}y_n=a 若存在正整数N,当n>N时,有xn⩽yn⩽zn,且n→∞limxn=n→∞limzn=a,则n→∞limyn=a
有界数列
若
存
在
两
个
数
A
,
B
(
设
A
<
b
)
,
数
列
{
x
n
}
的
每
一
项
都
在
闭
区
间
[
A
,
B
]
内
,
则
称
{
x
n
}
为
有
界
数
列
,
称
A
为
它
的
下
界
,
B
为
它
的
上
界
。
若存在两个数A,B(设A<b),数列{x_n}的每一项都在闭区间[A,B]内,则称{x_n}为有界数列,称A为它的下界,B为它的上界。
若存在两个数A,B(设A<b),数列{xn}的每一项都在闭区间[A,B]内,则称{xn}为有界数列,称A为它的下界,B为它的上界。
性质:
有
极
限
的
数
列
是
有
界
的
。
有极限的数列是有界的。
有极限的数列是有界的。
极限运算
两个数列极限的运算与基本四则运算基本一致,需要注意无穷小量等同0处理
单调有界数列
如果一个数列的每一项都大于等于前一项,我们就称这个数列是单调增加的,如果一个数列的每一项都严格大于前一项,我们就称这个数列是严格单调增加的,单调减少和严格单调减少同理。
这里有一个很重要的结论:
单
调
有
界
数
列
必
有
极
限
。
单调有界数列必有极限。
单调有界数列必有极限。
无穷大
对于一部分数列来说,它不是越来越接近一个值,而是无限制的增大,我们称它的极限为无穷大,下面给出它的严格定义:
设
{
x
n
}
是
一
个
数
列
,
如
果
对
任
意
给
定
的
G
>
0
,
总
存
在
正
整
数
N
,
当
n
>
N
时
,
必
有
∣
x
n
∣
>
G
,
我
们
称
{
x
n
}
是
一
个
无
穷
大
量
,
记
为
设{x_n}是一个数列,如果对任意给定的G>0,总存在正整数N,当n>N时,必有|x_n|>G,我们称{x_n}是一个无穷大量,记为
设{xn}是一个数列,如果对任意给定的G>0,总存在正整数N,当n>N时,必有∣xn∣>G,我们称{xn}是一个无穷大量,记为
lim
n
→
∞
x
n
=
∞
\lim\limits_{n\rarr\infin}x_n=\infin
n→∞limxn=∞
或
x
n
→
∞
(
n
→
∞
)
x_n\rarr{\infin}(n\rarr{\infin})
xn→∞(n→∞)
无穷大有一些重要的性质:
- 无穷大包含正无穷大和负无穷大
- 无穷大量的倒数是无穷小量
无穷的运算
- 都是正(负)无穷大的量之和也是正(负)无穷大量
- 有界数列和无穷大量的和也是无穷大量
- 收敛数列和无穷大量的乘积是无穷大量