数列的极限和无穷大量

数列

首先明确数列的定义
无 穷 多 个 数 按 次 序 一 个 接 一 个 地 排 列 下 去 , 就 构 成 一 个 数 列 。 无穷多个数按次序一个接一个地排列下去,就构成一个数列。
数列的一般项记作 { x n } {x_n} xn

极限定义

假设一个数列为 { 1 n } {\frac{1}{n}} n1,那么当 n n n越大,它就越接近0,所以我们说数列 { 1 n } {\frac{1}{n}} n1的极限为 0 0 0,下面给出了数列极限的定义
设 { x n } 是 一 个 数 列 , a 是 实 数 , 如 果 对 任 意 给 定 的 ε > 0 , 总 存 在 一 个 正 整 数 N , 当 n > N 时 , 都 有 ∣ x n − a ∣ < ε , 我 们 就 称 a 是 数 列 { x n } 的 极 限 , 或 者 称 数 列 { x n } 收 敛 , 且 收 敛 于 a , 记 为 设{x_n}是一个数列,a是实数,如果对任意给定的\varepsilon>0,总存在一个正整数N,当n>N时,都有|x_n-a|<\varepsilon,我们就称a是数列{x_n}的极限,或者称数列{x_n}收敛,且收敛于a,记为 xnaε>0Nn>Nxna<ε,axnxna
lim ⁡ n → ∞ x n = a \lim\limits_{n\rarr\infin}x_n=a nlimxn=a
特 别 地 , 当 a = 0 时 , 这 种 数 列 被 称 为 无 穷 小 量 。 我 们 称 没 有 极 限 的 数 列 是 发 散 的 。 特别地,当a=0时,这种数列被称为无穷小量。我们称没有极限的数列是发散的。 a=0
数列极限有一些十分重要的性质:

  • 若 lim ⁡ n → ∞ x n = a , lim ⁡ n → ∞ y n = b , 且 a > b , 则 总 存 在 正 整 数 N , 当 n > N 时 , 不 等 式 x n > y n 成 立 若\lim\limits_{n\rarr\infin}x_n=a,\lim\limits_{n\rarr\infin}y_n=b,且a>b,则总存在正整数N,当n>N时,不等式x_n>y_n成立 nlimxn=a,nlimyn=ba>b,Nn>Nxn>yn
  • 若 数 列 { x n } 收 敛 , 则 它 的 极 限 是 唯 一 的 若数列{x_n}收敛,则它的极限是唯一的 xn
  • 若 存 在 正 整 数 N , 当 n > N 时 , 有 x n ⩽ y n ⩽ z n , 且 lim ⁡ n → ∞ x n = lim ⁡ n → ∞ z n = a , 则 lim ⁡ n → ∞ y n = a 若存在正整数N,当n>N时,有x_n\leqslant{y_n}\leqslant{z_n},且\lim\limits_{n\rarr\infin}x_n=\lim\limits_{n\rarr\infin}z_n=a,则\lim\limits_{n\rarr\infin}y_n=a Nn>Nxnynzn,nlimxn=nlimzn=anlimyn=a

有界数列

若 存 在 两 个 数 A , B ( 设 A < b ) , 数 列 { x n } 的 每 一 项 都 在 闭 区 间 [ A , B ] 内 , 则 称 { x n } 为 有 界 数 列 , 称 A 为 它 的 下 界 , B 为 它 的 上 界 。 若存在两个数A,B(设A<b),数列{x_n}的每一项都在闭区间[A,B]内,则称{x_n}为有界数列,称A为它的下界,B为它的上界。 ABA<b,xn[A,B]xnAB
性质:
有 极 限 的 数 列 是 有 界 的 。 有极限的数列是有界的。

极限运算

两个数列极限的运算与基本四则运算基本一致,需要注意无穷小量等同0处理

单调有界数列

如果一个数列的每一项都大于等于前一项,我们就称这个数列是单调增加的,如果一个数列的每一项都严格大于前一项,我们就称这个数列是严格单调增加的,单调减少和严格单调减少同理。
这里有一个很重要的结论:
单 调 有 界 数 列 必 有 极 限 。 单调有界数列必有极限。

无穷大

对于一部分数列来说,它不是越来越接近一个值,而是无限制的增大,我们称它的极限为无穷大,下面给出它的严格定义:
设 { x n } 是 一 个 数 列 , 如 果 对 任 意 给 定 的 G > 0 , 总 存 在 正 整 数 N , 当 n > N 时 , 必 有 ∣ x n ∣ > G , 我 们 称 { x n } 是 一 个 无 穷 大 量 , 记 为 设{x_n}是一个数列,如果对任意给定的G>0,总存在正整数N,当n>N时,必有|x_n|>G,我们称{x_n}是一个无穷大量,记为 xnG>0,Nn>Nxn>G,xn
lim ⁡ n → ∞ x n = ∞ \lim\limits_{n\rarr\infin}x_n=\infin nlimxn=

x n → ∞ ( n → ∞ ) x_n\rarr{\infin}(n\rarr{\infin}) xn(n)
无穷大有一些重要的性质:

  • 无穷大包含正无穷大和负无穷大
  • 无穷大量的倒数是无穷小量

无穷的运算

  • 都是正(负)无穷大的量之和也是正(负)无穷大量
  • 有界数列和无穷大量的和也是无穷大量
  • 收敛数列和无穷大量的乘积是无穷大量
  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值