数列极限:无穷量与待定型

数学分析笔记——总目录

数列极限:无穷量与待定型

无穷量

无穷小量

定义(无穷小量):设 { x n } \{x_n\} {xn} 为一数列,若
lim ⁡ n → ∞ x n = 0 , \lim_{n \rightarrow \infty}{x_n} = 0, nlimxn=0
则称数列 { x n } \{x_n\} {xn}无穷小量

由数列极限的定义,若数列 { x n } \{x_n\} {xn} 收敛,且
lim ⁡ n → ∞ x n = a , \lim_{n \rightarrow \infty}{x_n} = a, nlimxn=a
则有
lim ⁡ n → ∞ ( x n − a ) = 0 , \lim_{n \rightarrow \infty}{\left(x_n-a\right)} = 0 , nlim(xna)=0
即数列 { x n − a } \{x_n-a\} {xna}无穷小量

无穷大量

定义(无穷大量):设 { x n } \{x_n\} {xn} 为数列,若对于任意给定的 G > 0 G>0 G>0,存在正整数 N N N,使得当 n > N n>N n>N 时,成立
∣ x n ∣ > G , \left|x_n\right| >G, xn>G
则称数列 { x n } \{x_n\} {xn}无穷大量,并记作
lim ⁡ n → ∞ x n = ∞ 。 \lim_{n \rightarrow \infty}{x_n} = \infty。 nlimxn=

无穷大量 可用符号表示:
∀ M > 0 , ∃ N ∈ N + , ∀ n > N : ∣ x n ∣ > M . \forall M>0,\exists N \in \mathbb{N}_{+},\forall n>N:\left|x_n\right|>M. M>0,NN+,n>N:xn>M.

无穷大量细分的话,有 正无穷大量负无穷大量

正无穷大量

定义(正无穷大量):设 { x n } \{x_n\} {xn} 为数列,若对于任意给定的 G > 0 G>0 G>0,存在正整数 N N N,使得当 n > N n>N n>N 时,成立
x n > G , x_n >G, xn>G
则称数列 { x n } \{x_n\} {xn}正无穷大量,并记作
lim ⁡ n → ∞ x n = + ∞ 。 \lim_{n \rightarrow \infty}{x_n} = +\infty。 nlimxn=+

注:不管你有多大,我总能比你大。

负无穷大量

定义(负无穷大量):设 { x n } \{x_n\} {xn} 为数列,若对于任意给定的 G > 0 G>0 G>0,存在正整数 N N N,使得当 n > N n>N n>N 时,成立
x n < − G , x_n <-G, xn<G
则称数列 { x n } \{x_n\} {xn}负无穷大量,并记作
lim ⁡ n → ∞ x n = − ∞ 。 \lim_{n \rightarrow \infty}{x_n} = -\infty。 nlimxn=

:不管你有多小,我总能比你小。

定号无穷大量

\quad 正无穷大量负无穷大量 统称为 定号无穷大量

无穷小量与无穷大量的关系

定理:设 x n ≠ 0 x_n \ne 0 xn=0,则数列 { x n } \{x_n\} {xn} 是无穷大量的充分必要条件是数列 { 1 x n } \{\frac{1}{x_n}\} {xn1} 是无穷小量。

证明:

必要性:

\quad 若数列 { x n } \{x_n\} {xn} 为无穷大量,则 ∀ ϵ > 0 \forall \epsilon>0 ϵ>0,可以取 G = 1 ϵ G=\frac{1}{\epsilon} G=ϵ1,则 ∃ N ∈ N + \exists N\in \mathbb{N}_{+} NN+,当 n > N n>N n>N 时成立
∣ x n ∣ > G = 1 ϵ |x_n|>G=\frac{1}{\epsilon} xn>G=ϵ1
因此
∣ 1 x n ∣ < ϵ \left|\frac{1}{x_n}\right|<\epsilon xn1<ϵ
即数列 { 1 x n } \{\frac{1}{x_n}\} {xn1} 是无穷小量;

充分性:

\quad 若数列 { 1 x n } \{\frac{1}{x_n}\} {xn1} 是无穷小量,则 ∀ M > 0 \forall M>0 M>0,可取 ϵ = 1 M \epsilon=\frac{1}{M} ϵ=M1,则 ∃ N ∈ N + \exists N \in \mathbb{N}_{+} NN+,使得当 n > N n>N n>N 时,成立
∣ 1 x n ∣ < ϵ = 1 G \left|\frac{1}{x_n}\right|<\epsilon=\frac{1}{G} xn1<ϵ=G1
因此
∣ x n ∣ > G \left|x_n\right|>G xn>G
即数列 { x n } \{x_n\} {xn} 是无穷大量。

证毕

定理:设 { x n } \{x_n\} {xn} { y n } \{y_n\} {yn} 为两个数列,若数列 { x n } \{x_n\} {xn} 是无穷大量, y n ≥ δ ( δ > 0 ) y_n \ge \delta(\delta>0) ynδ(δ>0),则数列 { x n y n } \{x_ny_n\} {xnyn} 也是无穷大量。

证明:

数列 { x n } \{x_n\} {xn} 是无穷大量,则对于任意给定的 G > 0 G>0 G>0,存在正整数 N N N,使得当 n > N n>N n>N 时, ∣ x n ∣ > G |x_n|>G xn>G

y n ≥ δ ( δ > 0 ) y_n \ge \delta(\delta>0) ynδ(δ>0) x n y n ≥ δ ⋅ x n x_ny_n \ge \delta\cdot x_n xnynδxn

因此,对于任意给定的 G > 0 G>0 G>0,存在正整数 N N N,使得当 n > N n>N n>N 时, ∣ x n y n ∣ > δ G |x_ny_n|>\delta G xnyn>δG

即数列 { x n } \{x_n\} {xn} 也是正无穷大量。

证毕

定理:设 { x n } \{x_n\} {xn} { y n } \{y_n\} {yn} 为两个数列,若数列 { x n } \{x_n\} {xn} 是无穷大量, lim ⁡ n → ∞ y n = b ≠ 0 \underset{n \rightarrow \infty}{\lim}y_n=b \ne 0 nlimyn=b=0,则数列 { x n y n } \{x_ny_n\} {xnyn} 与数列 { x n y n } \{\frac{x_n}{y_n}\} {ynxn} 也是无穷大量。

证明:

数列 { x n } \{x_n\} {xn} 是无穷大量,则对于任意给定的 G > 0 G>0 G>0,存在正整数 N 0 N_0 N0,使得当 n > N 0 n>N_0 n>N0 时, ∣ x n ∣ > G |x_n|>G xn>G

lim ⁡ n → ∞ y n = b ≠ 0 \underset{n \rightarrow \infty}{\lim}y_n=b \ne 0 nlimyn=b=0,由数列极限的保序性,存在正整数 N 1 N_1 N1,使得当 n > N 1 n>N_1 n>N1 时,成立 y n > b 2 y_n>\frac{b}{2} yn>2b

显然,有 lim ⁡ n → ∞ 1 y n = 1 b \underset{n \rightarrow \infty}{\lim}\frac{1}{y_n}=\frac{1}{b} nlimyn1=b1,因此,同样由数列极限的保序性,存在正整数 N 2 N_2 N2,使得当 n > N 2 n>N_2 n>N2 时,成立 1 y n > 1 2 b \frac{1}{y_n}>\frac{1}{2b} yn1>2b1

因此,取 N = max ⁡ { N 0 , N 1 , N 2 } N=\max \{N_0,N_1,N_2\} N=max{N0,N1,N2},当 n > N n>N n>N 时显然有
∣ x n y n ∣ > ∣ b ∣ G , ∣ x n y n ∣ > G ∣ 2 b ∣ |x_ny_n|>|b|G,\quad \left|\frac{x_n}{y_n}\right|>\frac{G}{|2b|} xnyn>bG,ynxn>2bG
即数列 { x n y n } \{x_ny_n\} {xnyn} 与数列 { x n y n } \{\frac{x_n}{y_n}\} {ynxn} 均为无穷大量。

证毕

待定型

0 0 \frac{0}{0} 00

定义:设 { x n } \{x_n\} {xn} { y n } \{y_n\} {yn} 为两个数列,若 lim ⁡ n → ∞ x n = 0 \underset{n \rightarrow \infty}{\lim}x_n=0 nlimxn=0 lim ⁡ n → ∞ y n = 0 \underset{n \rightarrow \infty}{\lim}y_n=0 nlimyn=0,则称数列 { x n y n } \{\frac{x_n}{y_n}\} {ynxn} 0 0 \frac{0}{0} 00 型的 不定式待定型

Stolz 定理

定理(Stolz定理):设 { x n } \{x_n\} {xn} { y n } \{y_n\} {yn} 为两个数列,其中 { y n } \{y_n\} {yn} 是严格单调增加的正无穷大量,且
lim ⁡ n → ∞ x n − x n − 1 y n − y n − 1 = a ( a 可以是有限量、 + ∞  与 − ∞ ) \lim_{n \rightarrow \infty}{\frac{x_n-x_{n-1}}{y_n-y_{n-1}}}=a \quad(a \text{可以是有限量、}+\infty ~ \text{与} - \infty) nlimynyn1xnxn1=a(a可以是有限量、+ )

lim ⁡ n → ∞ x n y n = a \lim_{n \rightarrow \infty}{\frac{x_n}{y_n}}=a nlimynxn=a

证明:

\quad 由于 { y n } \{y_n\} {yn} 是严格单调增加的正无穷大量,因此 y n − y n − 1 > 0 y_n-y_{n-1}>0 ynyn1>0

\quad a = 0 a=0 a=0,对于 ∀ ϵ > 0 \forall \epsilon>0 ϵ>0 ∃ N 1 ∈ N + \exists N_1 \in \mathbb{N}_{+} N1N+,使得当 n > N 1 n>N_1 n>N1 时,成立
∣ x n − x n − 1 y n − y n − 1 ∣ < ϵ , \left|\frac{x_n-x_{n-1}}{y_n-y_{n-1}}\right| <\epsilon, ynyn1xnxn1<ϵ
即有
∣ x n − y n ∣ < ∣ y n − y n − 1 ∣ ϵ = ( y n − y n − 1 ) ϵ 。 \left|x_n-y_n\right|<\left|y_n-y_{n-1}\right|\epsilon=(y_n-y_{n-1})\epsilon。 xnyn<ynyn1ϵ=(ynyn1)ϵ

\quad 由于 { y n } \{y_n\} {yn} 是严格单调增加的正无穷大量,因此 ∃ N 2 > N 1 , N 2 ∈ N + \exists N_2 > N_1,N_2 \in \mathbb{N}_{+} N2>N1,N2N+,使得 y N 2 > 0 y_{N_{2}}>0 yN2>0 ,并且当 n > N 2 n>N_2 n>N2 时, y n > 0 y_n>0 yn>0。则由三角不等式可得
∣ x n − y N 2 ∣ ≤ ∣ x n − x n − 1 ∣ + ∣ x n − 1 − x n − 1 ∣ + ⋯ + ∣ x N 2 + 1 − x N 2 ∣ < [ ( y n − y n − 1 ) + ( y n − 1 − y n − 1 ) + ⋯ + ( y N 2 + 1 − y N 2 ) ] ϵ = ( y n − y N 2 ) ϵ 。 \begin{aligned} \left|x_n-y_{N_2}\right| &\le \left|x_n - x_{n-1}\right| + \left| x_{n-1}-x_{n-1}\right| + \cdots + \left|x_{N_2+1} - x_{N_2}\right| \\ & < \left[(y_n - y_{n-1}) +( y_{n-1}-y_{n-1}) + \cdots + (y_{N_2+1} - y_{N_2})\right]\epsilon \\ &=(y_n-y_{N_2})\epsilon。 \end{aligned} xnyN2xnxn1+xn1xn1++xN2+1xN2<[(ynyn1)+(yn1yn1)++(yN2+1yN2)]ϵ=(ynyN2)ϵ

\quad 不等式两端同除以 y n y_n yn y n > 0 y_n>0 yn>0,不等式不变号),即有
∣ x n y n − x N 2 y n ∣ < ( 1 − y N 2 y n ) ϵ < ϵ 。 \left|\frac{x_n}{y_n}-\frac{x_{N_2}}{y_n}\right|<\left(1-\frac{y_{N_2}}{y_n}\right)\epsilon<\epsilon。 ynxnynxN2<(1ynyN2)ϵ<ϵ

:由于前面已经要求 y N 2 > 0 y_{N_2}>0 yN2>0,因此 y N 2 y n > 0 \frac{y_{N_2}}{y_n}>0 ynyN2>0 1 − y N 2 y n < 1 1-\frac{y_{N_2}}{y_n}<1 1ynyN2<1

因此有
∣ x n y n ∣ < ∣ x N 2 y n ∣ + ϵ , \left|\frac{x_n}{y_n}\right|<\left|\frac{x_{N_2}}{y_n}\right|+\epsilon, ynxn<ynxN2+ϵ

\quad 对于固定的 N 2 N_2 N2 x N 2 x_{N_2} xN2 是恒定的,由于 y n {y_{n}} yn 是严格单调增加的正无穷大量,因此 { 1 y n } \{\frac{1}{y_n}\} {yn1} 是无穷小量,所以 N 3 > N 2 , N 3 ∈ N + N_{3}>N_{2},N_3 \in \mathbb{N}_{+} N3>N2,N3N+,使得
∣ x N 2 y n ∣ < ϵ , \left|\frac{x_{N_2}}{y_n}\right|<\epsilon, ynxN2<ϵ
从而有:
∣ x n y n ∣ < ∣ x N 2 y n ∣ + ϵ < 2 ϵ . \left|\frac{x_n}{y_n}\right|<\left|\frac{x_{N_2}}{y_n}\right|+\epsilon<2\epsilon. ynxn<ynxN2+ϵ<2ϵ.

lim ⁡ n → ∞ x n y n = a = 0 。 \lim_{n \rightarrow \infty}{\frac{x_n}{y_n}}=a=0。 nlimynxn=a=0

\quad a a a 为某一有限量,则可以构造数列 x n ′ = x n − a y n x_n^{'}=x_n-ay_n xn=xnayn。因此
lim ⁡ n → ∞ x n ′ − x n − 1 ′ y n − y n − 1 = lim ⁡ n → ∞ ( x n − x n − 1 y n − y n − 1 − a ) = 0 , \lim_{n \rightarrow \infty}{\frac{x_n^{'}-x_{n-1}^{'}}{y_n-y_{n-1}}}=\lim_{n \rightarrow \infty}{\left(\frac{x_n-x_{n-1}}{y_n-y_{n-1}}-a\right)}=0, nlimynyn1xnxn1=nlim(ynyn1xnxn1a)=0
由前面的结论知
lim ⁡ n → ∞ x n ′ y n = 0 , \lim_{n \rightarrow \infty}{\frac{x_n^{'}}{y_n}}=0, nlimynxn=0,
即有
lim ⁡ n → ∞ ( x n y n − a ) = 0   ,   lim ⁡ n → ∞ x n y n = a 。 \lim_{n \rightarrow \infty}{\left(\frac{x_n}{y_n}-a\right)}=0 ~ , ~ \lim_{n\rightarrow \infty}{\frac{x_n}{y_n}}=a。 nlim(ynxna)=0 , nlimynxn=a

\quad a = + ∞ a=+\infty a=+,则数列 { x n − x n − 1 y n − y n − 1 } \{\frac{x_n-x_{n-1}}{y_n-y_{n-1}}\} {ynyn1xnxn1} 为正无穷大量,因此数列 { y n − y n − 1 x n − x n − 1 } \{\frac{y_n-y_{n-1}}{x_n-x_{n-1}}\} {xnxn1ynyn1} 为无穷小量,即有
lim ⁡ n → ∞ y n − y n − 1 x n − x n − 1 = 0 。 \lim_{n \rightarrow \infty}{\frac{y_n-y_{n-1}}{x_n-x_{n-1}}}=0。 nlimxnxn1ynyn1=0
\quad M = 1 M=1 M=1,则 ∃ N ∈ N + \exists N \in \mathbb{N}_{+} NN+,使得当 n > N n>N n>N 时有
( x n − x n − 1 y n − y n − 1 ) > M = 1 , \left(\frac{x_n-x_{n-1}}{y_n-y_{n-1}}\right)>M=1, (ynyn1xnxn1)>M=1
即有
x n − x n − 1 > M ( y n − y n − 1 ) = y n − y n − 1 > 0 。 x_n-x_{n-1}>M(y_n-y_{n-1})=y_n-y_{n-1}>0。 xnxn1>M(ynyn1)=ynyn1>0
因此, { x n } \{x_n\} {xn} 是严格单调增加。

\quad 而由
x n − x N = ( x n − x n − 1 ) + ( x n − 1 − x n − 2 ) + ⋯ + ( x N + 1 − x N ) < ( y n − y n − 1 ) + ( y n − 1 − x n − 2 ) + ⋯ + ( y N + 1 − y N ) = y n − y N \begin{aligned} x_n-x_N &=(x_n-x_{n-1})+(x_{n-1}-x_{n-2})+\cdots+(x_{N+1}-x_{N}) \\ &<(y_n-y_{n-1})+(y_{n-1}-x_{n-2})+\cdots+(y_{N+1}-y_{N}) \\ &=y_n-y_N \end{aligned} xnxN=(xnxn1)+(xn1xn2)++(xN+1xN)<(ynyn1)+(yn1xn2)++(yN+1yN)=ynyN
知, { x n } \{x_n\} {xn} 是正无穷大量。

\quad 所以将前面的结论应用到数列 { y n − y n − 1 x n − x n − 1 } \{\frac{y_n-y_{n-1}}{x_n-x_{n-1}}\} {xnxn1ynyn1} 即有:
lim ⁡ n → ∞ y n x n = lim ⁡ n → ∞ y n − y n − 1 x n − x n − 1 = 0 。 \lim_{n \rightarrow \infty}{\frac{y_n}{x_n}} = \lim_{n \rightarrow \infty}{\frac{y_n-y_{n-1}}{x_n-x_{n-1}}}=0。 nlimxnyn=nlimxnxn1ynyn1=0
因此
lim ⁡ n → ∞ x n y n = + ∞ 。 \lim_{n \rightarrow \infty}{\frac{x_n}{y_n}} =+\infty。 nlimynxn=+

\quad a = − ∞ a=-\infty a=,则数列 { x n − x n − 1 y n − y n − 1 } \{\frac{x_n-x_{n-1}}{y_n-y_{n-1}}\} {ynyn1xnxn1} 为负无穷大量,同样,数列 { y n − y n − 1 x n − x n − 1 } \{\frac{y_n-y_{n-1}}{x_n-x_{n-1}}\} {xnxn1ynyn1} 为无穷小量,即有
lim ⁡ n → ∞ y n − y n − 1 x n − x n − 1 = 0 。 \lim_{n \rightarrow \infty}{\frac{y_n-y_{n-1}}{x_n-x_{n-1}}}=0。 nlimxnxn1ynyn1=0
\quad M = − 1 M=-1 M=1,则 ∃ N ∈ N + \exists N \in \mathbb{N}_{+} NN+,使得当 n > N n>N n>N 时有
( x n − x n − 1 y n − y n − 1 ) < M = − 1 , \left(\frac{x_n-x_{n-1}}{y_n-y_{n-1}}\right)<M=-1, (ynyn1xnxn1)<M=1
即有
x n − x n − 1 < − ( y n − y n − 1 ) = y n − 1 − y n < 0 。 x_n-x_{n-1}<-(y_n-y_{n-1})=y_{n-1}-y_{n}<0。 xnxn1<(ynyn1)=yn1yn<0
因此, { x n } \{x_n\} {xn} 是严格单调减小。

\quad 而由
x n − x N = − [ ( x n − x n − 1 ) + ( x n − 1 − x n − 2 ) + ⋯ + ( x N + 1 − x N ) ] < − [ ( y n − y n − 1 ) + ( y n − 1 − x n − 2 ) + ⋯ + ( y N + 1 − y N ) ] = y N − y n \begin{aligned} x_n-x_N &=-\left[(x_n-x_{n-1})+(x_{n-1}-x_{n-2})+\cdots+(x_{N+1}-x_{N})\right] \\ &<-\left[(y_n-y_{n-1})+(y_{n-1}-x_{n-2})+\cdots+(y_{N+1}-y_{N})\right] \\ &=y_N-y_n \end{aligned} xnxN=[(xnxn1)+(xn1xn2)++(xN+1xN)]<[(ynyn1)+(yn1xn2)++(yN+1yN)]=yNyn
知, { x n } \{x_n\} {xn} 是负无穷大量,则数列 { − x n } \{-x_n\} {xn} 为正无穷大量。

\quad 所以将前面的结论应用到数列 { y n − y n − 1 − ( x n − x n − 1 ) } \{\frac{y_n-y_{n-1}}{-(x_n-x_{n-1})}\} {(xnxn1)ynyn1} 即有:
lim ⁡ n → ∞ y n − x n = lim ⁡ n → ∞ y n − y n − 1 − ( x n − x n − 1 ) = lim ⁡ n → ∞ − y n − y n − 1 x n − x n − 1 = ( − 1 ) ⋅ 0 = 0 。 \lim_{n \rightarrow \infty}{\frac{y_n}{-x_n}} = \lim_{n \rightarrow \infty}{\frac{y_n-y_{n-1}}{-(x_n-x_{n-1})}}=\lim_{n \rightarrow \infty}{-\frac{y_n-y_{n-1}}{x_{n}-x_{n-1}}}=(-1)·0=0。 nlimxnyn=nlim(xnxn1)ynyn1=nlimxnxn1ynyn1=(1)0=0
因此
lim ⁡ n → ∞ − x n y n = + ∞   ,   lim ⁡ n → ∞ x n y n = − ∞ 。 \lim_{n \rightarrow \infty}{\frac{-x_n}{y_n}} =+\infty ~ , ~ \lim_{n \rightarrow \infty}{\frac{x_n}{y_n}} =-\infty。 nlimynxn=+ , nlimynxn=

证毕

参考文献

[1] 陈纪修,于崇华,金路著. 数学分析 上册. 第2版. 北京:高等教育出版社, 2004.06.
[2] 华东师范大学数学系编. 数学分析 上册. 第4版. 北京:高等教育出版社, 2010.07.

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值