数列极限<2>——无穷大量

无穷大量

无穷大量的定义

定义2.1 无穷大量

若数列 { x n } \left \{ x_{n} \right \} {xn}满足: ∀ G > 0 \forall G>0 G>0, ∃ N : ∀ n > N \exists N:\forall n>N N:n>N, x n > G x_{n}>G xn>G,则称 { x n } \left \{ x_{n} \right \} {xn}为正无穷大量,数列极限为正无穷大,记为 lim ⁡ n → ∞ x n = + ∞ \lim _{n\to \infty } x_{n}=+\infty limnxn=+;
若数列 { x n } \left \{ x_{n} \right \} {xn}满足: ∀ G > 0 \forall G>0 G>0, ∃ N : ∀ n > N \exists N:\forall n>N N:n>N, x n < − G x_{n}<-G xn<G,则称 { x n } \left \{ x_{n} \right \} {xn}为负无穷大量,数列极限为负无穷大,记为 lim ⁡ n → ∞ x n = − ∞ \lim _{n\to \infty } x_{n}=-\infty limnxn=;
若数列 { x n } \left \{ x_{n} \right \} {xn}满足: ∀ G > 0 \forall G>0 G>0, ∃ N : ∀ n > N \exists N:\forall n>N N:n>N, ∣ x n ∣ > G \left | x_{n} \right |>G xn>G,则称 { x n } \left \{ x_{n} \right \} {xn}为不定号无穷大量数列极限为不定号无穷大,记为 lim ⁡ n → ∞ x n = ∞ \lim _{n\to \infty } x_{n}=\infty limnxn=
可扩充极限定义,认为无穷大量的极限是正无穷大,负无穷大或不定号无穷大。

定理2.1

{ x n } \left \{ x_{n} \right \} {xn}是无穷大量当且仅当 { 1 x n } \left \{ \frac{1}{x_{n}} \right \} {xn1}是无穷小量。
根据无穷小量的定义, ∀ ε > 0 \forall \varepsilon >0 ε>0, ∃ N \exists N N: ∀ n > N \forall n>N n>N, ∣ x n ∣ < ε \left | x_{n} \right |< \varepsilon xn<ε,令 G = 1 ε G=\frac{1}{\varepsilon } G=ε1,则 ∣ 1 x n ∣ > G = 1 ε \left | \frac{1}{x_{n} } \right | >G=\frac{1}{\varepsilon } xn1 >G=ε1, { 1 x n } \left \{ \frac{1}{x_{n}} \right \} {xn1}是无穷大量。
根据无穷大量的定义, ∀ G > 0 \forall G >0 G>0, ∃ N \exists N N: ∀ n > N \forall n>N n>N, ∣ x n ∣ > G \left | x_{n} \right |>G xn>G,令 ε = 1 G \varepsilon=\frac{1}{G } ε=G1,则 ∣ 1 x n ∣ < ε = 1 G \left | \frac{1}{x_{n} } \right | <\varepsilon=\frac{1}{G } xn1 <ε=G1, { 1 x n } \left \{ \frac{1}{x_{n}} \right \} {xn1}是无穷小量。

无穷大量的判定

定理2.2

无穷小量与有界数列的乘积也是无穷小量。相应地,无穷大量与无界数列的乘积也是无穷大量。

定理2.3 Stolz定理

{ x n } \left \{ x_{n} \right \} {xn}, { y n } \left \{ y_{n} \right \} {yn}是数列,若满足以下条件:
(1)数列 { x n + 1 − x n y n + 1 − y n } \left \{ \frac{x_{n+1} -x_{n} }{y_{n+1}-y_{n}} \right \} {yn+1ynxn+1xn}收敛或是正(负)无穷大量;
(2)数列 { y n } \left \{ y_{n} \right \} {yn}是严格递增的正无穷大量。
{ x n y n } \left \{ \frac{x_{n} }{y_{n} } \right \} {ynxn}也收敛,且 lim ⁡ n → ∞ x n y n = lim ⁡ n → ∞ x n + 1 − x n y n + 1 − y n \lim_{n \to \infty} \frac{x_{n} }{y_{n} } =\lim_{n \to \infty} \frac{x_{n+1} -x_{n} }{y_{n+1}-y_{n}} limnynxn=limnyn+1ynxn+1xn

以数列 { x n + 1 − x n y n + 1 − y n } \left \{ \frac{x_{n+1} -x_{n} }{y_{n+1}-y_{n}} \right \} {yn+1ynxn+1xn}的极限 a a a的不同情形,分类讨论:
<1> a = 0 a=0 a=0,
根据数列极限定义, ∀ ε > 0 \forall \varepsilon >0 ε>0, ∃ N 1 \exists N_{1} N1: ∀ n > N 1 \forall n>N_{1} n>N1, ∣ x n + 1 − x n ∣ < ε ∣ y n + 1 − y n ∣ \left | x_{n+1} -x_{n} \right |<\varepsilon \left | y_{n+1}-y_{n} \right | xn+1xn<εyn+1yn,
因为 { y n } \left \{ y_{n} \right \} {yn}是单调递增数列,所以 y n + 1 − y n > 0 y_{n+1}-y_{n}>0 yn+1yn>0, ∣ x n + 1 − x n ∣ < ε ( y n + 1 − y n ) \left | x_{n+1} -x_{n} \right |<\varepsilon\left ( y_{n+1}-y_{n} \right ) xn+1xn<ε(yn+1yn)
又根据三角不等式:
∣ x n − x N 1 ∣ = ∣ ∑ i = N 1 n − 1 ( x i + 1 − x i ) ∣ < ∑ i = N 1 n − 1 ∣ x i + 1 − x i ∣ < ∑ i = N 1 n − 1 ε ( y i + 1 − y i ) < ε ( y n − y N 1 ) \left | x_{n}-x_{N_{1}} \right | =\left | \sum_{i=N_{1}}^{n-1}\left ( x_{i+1} -x_{i} \right ) \right | < \sum_{i=N_{1}}^{n-1 } \left | x_{i+1} -x_{i} \right | < \sum_{i=N_{1}}^{n-1 } \varepsilon \left ( y_{i+1}-y_{i} \right ) < \varepsilon \left ( y_{n}-y_{N_{1}} \right ) xnxN1= i=N1n1(xi+1xi) <i=N1n1xi+1xi<i=N1n1ε(yi+1yi)<ε(ynyN1)
因为 y n + 1 − y n > 0 y_{n+1}-y_{n}>0 yn+1yn>0,所以 y n + 1 − y N 1 = ∑ i = N 1 n − 1 ( y i + 1 − y i ) > 0 y_{n+1}-y_{N_{1}} =\sum_{i=N_{1}}^{n-1 } \left ( y_{i+1}-y_{i} \right )>0 yn+1yN1=i=N1n1(yi+1yi)>0
不等式两边除以 y n − y N 1 y_{n}-y_{N_{1}} ynyN1,可得 ∣ x n − x N 1 y n − y N 1 ∣ < ε \left | \frac{ x_{n}-x_{N_{1}}}{y_{n}-y_{N_{1}} } \right | < \varepsilon ynyN1xnxN1 <ε,
又因为数列 { y n } \left \{ y_{n} \right \} {yn}是正无穷大量,所以 ∀ G > 0 \forall G>0 G>0, ∃ N 2 \exists N_{2} N2: ∀ n > N 2 \forall n> N_{2} n>N2, ∣ y n ∣ > G \left | y_{n} \right |>G yn>G,令 G = 0 G=0 G=0,可得 ∃ N 2 \exists N_{2} N2: ∀ n > N 2 \forall n> N_{2} n>N2, ∣ y n ∣ > 0 \left | y_{n} \right |>0 yn>0
N = max ⁡ { N 1 , N 2 } N=\max \left \{ N_{1} ,N_{2} \right \} N=max{N1,N2},则当 n > N n>N n>N时, ∣ x n y n − x N y n ∣ < ε \left | \frac{x_{n} }{y_{n} } -\frac{x_{N} }{y_{n} } \right |<\varepsilon ynxnynxN <ε,
根据三角不等式, ∣ x n y n ∣ < ε + ∣ x N y n ∣ \left | \frac{x_{n} }{y_{n} } \right |<\varepsilon +\left | \frac{x_{N} }{y_{n} } \right | ynxn <ε+ ynxN ,
因为数列 { y n } \left \{ y_{n} \right \} {yn}是正无穷大量,由定理2.1, { 1 y n } \left \{ \frac{1}{y_{n}} \right \} {yn1}是无穷小量,
x N x_{N} xN是有界的常量,所以根据定理2.2, { x N y n } \left \{ \frac{x_{N} }{y_{n} } \right \} {ynxN}也是无穷小量, ∀ ε > 0 \forall \varepsilon >0 ε>0, ∃ N \exists N N: ∀ n > N \forall n>N n>N, ∣ x N y n ∣ < ε \left | \frac{x_{N} }{y_{n} } \right |<\varepsilon ynxN <ε, ∣ x n y n ∣ < ε + ∣ x N y n ∣ < 2 ε \left | \frac{x_{n} }{y_{n} } \right |<\varepsilon +\left | \frac{x_{N} }{y_{n} } \right |<2\varepsilon ynxn <ε+ ynxN <2ε
综上所述, { x n y n } \left \{ \frac{x_{n} }{y_{n}} \right \} {ynxn}也是无穷小量,也就是 { x n y n } \left \{ \frac{x_{n} }{y_{n}} \right \} {ynxn}极限为0。
<2> a ≠ 0 a\neq 0 a=0 a a a有界
根据定理1.1, lim ⁡ n → ∞ ( x n + 1 − x n y n + 1 − y n ) = a ⇔ lim ⁡ n → ∞ ( x n + 1 − x n y n + 1 − y n − a ) = 0 \lim_{n \to \infty} \left ( \frac{x_{n+1} -x_{n} }{y_{n+1}-y_{n}} \right ) =a\Leftrightarrow \lim_{n \to \infty}\left ( \frac{x_{n+1} -x_{n} }{y_{n+1}-y_{n}} -a\right )=0 limn(yn+1ynxn+1xn)=alimn(yn+1ynxn+1xna)=0
右侧等式又可以化简为 x n + 1 − x n − a ( y n + 1 − y n ) y n + 1 − y n = ( x n + 1 − a y n + 1 ) − ( x n − a y n ) y n + 1 − y n \frac{x_{n+1} -x_{n}-a\left ( y_{n+1}-y_{n} \right ) }{y_{n+1}-y_{n}} =\frac{\left ( x_{n+1}-a y_{n+1} \right ) -\left ( x_{n}-a y_{n}\right ) }{y_{n+1}-y_{n}} yn+1ynxn+1xna(yn+1yn)=yn+1yn(xn+1ayn+1)(xnayn),
由此可以构造新数列 x n ′ = x n − a y n x^{\prime }_{n} = x_{n}-a y_{n} xn=xnayn,
x n + 1 ′ − x n ′ y n + 1 − y n \frac{x_{n+1}^{\prime } -x_{n}^{\prime } }{y_{n+1}-y_{n}} yn+1ynxn+1xn同样满足Stolz定理,所以 lim ⁡ n → ∞ ( x n ′ y n ) = lim ⁡ n → ∞ ( x n − a y n y n ) = lim ⁡ n → ∞ ( x n y n − a ) = 0 \lim_{n \to \infty}\left ( \frac{x_{n}^{\prime } }{y_{n}} \right ) =\lim_{n \to \infty}\left ( \frac{x_{n}-a y_{n}}{y_{n}} \right )= \lim_{n \to \infty}\left ( \frac{x_{n} }{y_{n} }-a \right )=0 limn(ynxn)=limn(ynxnayn)=limn(ynxna)=0,即 lim ⁡ n → ∞ ( x n y n ) = a \lim_{n \to \infty} \left ( \frac{x_{n} }{y_{n}} \right ) =a limn(ynxn)=a
<3> a = + ∞ a=+ \infty a=+
由数列极限的保序性, ∃ N \exists N N: ∀ n > N \forall n>N n>N, x n + 1 − x n y n + 1 − y n > 0 \frac{x_{n+1} -x_{n} }{y_{n+1}-y_{n}}>0 yn+1ynxn+1xn>0,
根据无穷大量定义, ∀ G > 0 \forall G >0 G>0, ∃ N \exists N N: ∀ n > N \forall n>N n>N, x n + 1 − x n y n + 1 − y n > G ⇒ x n + 1 − x n > G ( y n + 1 − y n ) \frac{x_{n+1} -x_{n} }{y_{n+1}-y_{n}} >G\Rightarrow x_{n+1} -x_{n} >G\left ( y_{n+1}-y_{n} \right ) yn+1ynxn+1xn>Gxn+1xn>G(yn+1yn),
因为 { y n } \left \{ y_{n} \right \} {yn}是单调递增数列,所以 y n + 1 − y n > 0 y_{n+1}-y_{n}>0 yn+1yn>0, x n + 1 − x n > G ( y n + 1 − y n ) > 0 x_{n+1} -x_{n} >G \left ( y_{n+1}-y_{n} \right )>0 xn+1xn>G(yn+1yn)>0,进而 { x n } \left \{ x_{n} \right \} {xn}也是单调递增数列。
对不等式所有满足 n > N n>N n>N的项 x n x_{n} xn进行累加操作:
∑ i = N n − 1 ( x n + 1 − x n ) > ∑ i = N n − 1 G ( y n + 1 − y n ) ⇔ x n − x N > G ( y n − y N ) ⇔ x n > G ( y n − y N ) + x N \sum_{i=N}^{n-1} \left ( x_{n+1} -x_{n} \right ) > \sum_{i=N}^{n-1}G \left ( y_{n+1} -y_{n} \right )\Leftrightarrow x_{n} -x_{N} >G\left ( y_{n} -y_{N} \right ) \Leftrightarrow x_{n}>G\left ( y_{n} -y_{N} \right )+x_{N} i=Nn1(xn+1xn)>i=Nn1G(yn+1yn)xnxN>G(ynyN)xn>G(ynyN)+xN
因为 y n y_{n} yn是严格递增的正无穷大量,而 x N x_{N} xN, y N y_{N} yN是定量,所以 { x n } \left \{ x_{n} \right \} {xn}也是正无穷大量。
根据定理2.1, lim ⁡ n → ∞ x n + 1 − x n y n + 1 − y n = + ∞ ⇔ lim ⁡ n → ∞ y n + 1 − y n x n + 1 − x n = 0 \lim_{n \to \infty} \frac{x_{n+1} -x_{n} }{y_{n+1}-y_{n}} =+\infty \Leftrightarrow \lim_{n \to \infty} \frac{y_{n+1}-y_{n}}{x_{n+1} -x_{n} } =0 limnyn+1ynxn+1xn=+limnxn+1xnyn+1yn=0,上文又已知数列 { x n } \left \{ x_{n} \right \} {xn}是严格递增的正无穷大量,所以引用<1>中的结论, lim ⁡ n → ∞ y n x n = 0 \lim_{n \to \infty} \frac{y_{n}}{x_{n} } =0 limnxnyn=0,
再次引用定理2.1, lim ⁡ n → ∞ y n x n = + ∞ \lim_{n \to \infty} \frac{y_{n}}{x_{n} } =+\infty limnxnyn=+
<4> a = − ∞ a=- \infty a=
与<3>同理。

  • 25
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值