Opencv核心功能---离散傅立叶变换

代码

#include "opencv2/core.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/highgui.hpp"

#include <iostream>

using namespace cv;
using namespace std;

static void help(void)
{
    cout << endl
        <<  "This program demonstrated the use of the discrete Fourier transform (DFT). " << endl
        <<  "The dft of an image is taken and it's power spectrum is displayed."          << endl
        <<  "Usage:"                                                                      << endl
        <<  "./discrete_fourier_transform [image_name -- default ../data/lena.jpg]"       << endl;
}

int main(int argc, char ** argv)
{
    help();

    const char* filename = argc >=2 ? argv[1] : "../data/lena.jpg";

    Mat I = imread(filename, IMREAD_GRAYSCALE);
    if( I.empty()){
        cout << "Error opening image" << endl;
        return -1;
    }

//! [expand]
    Mat padded;                            //expand input image to optimal size
    int m = getOptimalDFTSize( I.rows );
    int n = getOptimalDFTSize( I.cols ); // on the border add zero values
    copyMakeBorder(I, padded, 0, m - I.rows, 0, n - I.cols, BORDER_CONSTANT, Scalar::all(0));
//! [expand]

//! [complex_and_real]
    Mat planes[] = {Mat_<float>(padded), Mat::zeros(padded.size(), CV_32F)};
    Mat complexI;
    merge(planes, 2, complexI);         // Add to the expanded another plane with zeros
//! [complex_and_real]

//! [dft]
    dft(complexI, complexI);            // this way the result may fit in the source matrix
//! [dft]

    // compute the magnitude and switch to logarithmic scale
    // => log(1 + sqrt(Re(DFT(I))^2 + Im(DFT(I))^2))
//! [magnitude]
    split(complexI, planes);                   // planes[0] = Re(DFT(I), planes[1] = Im(DFT(I))
    magnitude(planes[0], planes[1], planes[0]);// planes[0] = magnitude
    Mat magI = planes[0];
//! [magnitude]

//! [log]
    magI += Scalar::all(1);                    // switch to logarithmic scale
    log(magI, magI);
//! [log]

//! [crop_rearrange]
    // crop the spectrum, if it has an odd number of rows or columns
    magI = magI(Rect(0, 0, magI.cols & -2, magI.rows & -2));

    // rearrange the quadrants of Fourier image  so that the origin is at the image center
    int cx = magI.cols/2;
    int cy = magI.rows/2;

    Mat q0(magI, Rect(0, 0, cx, cy));   // Top-Left - Create a ROI per quadrant
    Mat q1(magI, Rect(cx, 0, cx, cy));  // Top-Right
    Mat q2(magI, Rect(0, cy, cx, cy));  // Bottom-Left
    Mat q3(magI, Rect(cx, cy, cx, cy)); // Bottom-Right

    Mat tmp;                           // swap quadrants (Top-Left with Bottom-Right)
    q0.copyTo(tmp);
    q3.copyTo(q0);
    tmp.copyTo(q3);

    q1.copyTo(tmp);                    // swap quadrant (Top-Right with Bottom-Left)
    q2.copyTo(q1);
    tmp.copyTo(q2);
//! [crop_rearrange]

//! [normalize]
    normalize(magI, magI, 0, 1, NORM_MINMAX); // Transform the matrix with float values into a
                                            // viewable image form (float between values 0 and 1).
//! [normalize]

    imshow("Input Image"       , I   );    // Show the result
    imshow("spectrum magnitude", magI);
    waitKey();

    return 0;
}

解释

傅里叶变换将图像分解为其正弦和余弦分量。 换句话说,它将图像从其空间域变换到其频域。 这个想法是任何函数都可以用无限正弦和余弦函数的总和精确地近似。 傅里叶变换是一种如何做到这一点的方法。 数学上二维图像傅里叶变换是:

这里f是其空间域中的图像值,并且是其频域中的F. 转换的结果是复数。 通过真实图像和复杂图像或通过幅度和相位图像可以显示这一点。 然而,在整个图像处理算法中,仅幅度图像是有趣的,因为这包含了关于图像几何结构所需的所有信息。 然而,如果你打算对这些形式的图像进行一些修改然后你需要重新转换它,你需要保留这两个。

在这个例子中,我将展示如何计算和显示傅立叶变换的幅度图像。 在数字图像是离散的情况下。 这意味着它们可能会占用给定域值的值。 例如,在基本灰度级中,图像值通常在0到255之间。因此,傅里叶变换也需要是离散型,从而产生离散傅立叶变换(DFT)。 每当需要从几何角度确定图像的结构时,您都会想要使用它。 以下是要遵循的步骤(如果是灰度输入图像I):

  1. 将图像展开到最佳尺寸。DFT的性能取决于图像大小。 对于图像尺寸来说,它往往是最快的,它是数字2,3和5的倍数。 因此,为了获得最大性能,通常最好将边界值填充到图像以获得具有这种特征的大小。 cv :: getOptimalDFTSize()返回这个最佳大小,我们可以使用cv :: copyMakeBorder()函数来扩展图像的边框:
  2. 为复杂和真实的价值观创造条件。傅里叶变换的结果很复杂。 这意味着对于每个图像值,结果是两个图像值(每个组件一个)。 此外,频域范围远大于其空间对应物。 因此,我们通常至少以浮动格式存储它们。 因此,我们将输入图像转换为此类型,并使用另一个通道扩展它以保存复杂值:
  3. 进行离散傅立叶变换。
  4. 将实数和复数值转换为幅度。复数具有实数(Re)和复数(虚数 - Im)部分。 DFT的结果是复数。 DFT的大小是:
  5. 切换到对数刻度。事实证明,傅立叶系数的动态范围太大而无法在屏幕上显示。 我们有一些小的和一些高变化的值,我们无法像这样观察到。 因此,高值将全部变为白点,而小值则变为黑色。 要使用灰度值进行可视化,我们可以将线性比例转换为对数比例:
  6. 裁剪并重新排列。我们还可以重新排列结果的象限,以使原点(零,零)与图像中心对应。
  7. 规范化。我们现在有了幅度,但是这仍然是我们的图像显示范围从零到一。 我们使用cv :: normalize()函数将值标准化到此范围。

结果

应用的想法是确定图像中存在的几何方向。 例如,让我们看看文本是否是水平的? 看一些文字,你会注意到文本行的形式也是水平线,字母形成一些垂直线。 在傅里叶变换的情况下,也可以看到文本片段的这两个主要组成部分。 让我们使用这个水平和旋转的图像关于文本。

如果是水平文字:

如果是旋转文字:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值