C++下OpenCV学习笔记
----离散傅里叶变换
文章目录
一.离散傅里叶变换
- 原理
对一张图像使用傅立叶变换就是将它分解成正弦和余弦两部分。也就是将图像从空间域(spatial domain)转换到频域(frequency domain)。
在频域中,对于一幅图像,高频部分代表了图像的细节、纹理信息;低频部分代表了图像的轮廓信息。
- 理论基础
任一函数都可以表示成无数个正弦和余弦函数的和的形式。傅立叶变换就是一个用来将函数分解的工具。 - 数学公式 :二维
f是空间域(spatial domain)值
F是频域(frequency domain)值
转换之后的频域值是复数
- 显示傅立叶变换之后的结果需要使用实数图像(real image) 加虚数图像(complex image), 或者幅度图像(magitude image)加相位图像(phase image)。
- 在实际的图像处理过程中,仅仅使用了幅度图像,因为幅度图像包含了原图像的几乎所有我们需要的几何信息。
- 若想通过修改幅度图像或者相位图像的方法来间接修改原空间图像,则需要使用逆傅立叶变换得到修改后的空间图像,必须同时保留幅度图像和相位图像。
- 应用
在图像处理中:图像增强与图像去噪,图像分割之边缘检测,图像特征提取,图像压缩等。
二.dft( )函数
- 作用
对一维或二维浮点数数组进行正向或反向的离散傅里叶变换。 - 原型
void dft(InputArray src, OutputArray dst, int flags = 0, int nonzeroRows = 0);
第一个参数:表示输入的矩阵,可为实数或者虚数。
第二个参数:表示输出的矩阵。
第三个参数:表示转换的标识符。决定输出矩阵的尺寸和类型。默认为0.
第四个参数:默认为0。当此参数设为非零时,函数会假设只有输入矩阵的第一个非零行包含非零元素,或只有输出矩阵的一个非零行包含非零元素。
名称 | 意义 |
---|---|
DFT_INVERSE | 用一维或二维逆变换代替默认的正向变换 |
DFT_SCALE | 缩放比例标识符,输出的结果都会以1/N进行缩放,通常与DFT_INVERSE一起使用 |
DFT_ROWS | 对输入矩阵的每行进行正向或反向的变换,此标识符可以在处理多种矢量的时候用于减小资源开销,这些处理常是三维或高维变换等复杂操作 |
DFT_COMPLEX_OUTPUT | 进行一维或二维实数数组正变换。这样的结果虽然是复数阵列,但拥有复数的共轭对称性(CCS),所以可以被写成一个拥有同样尺寸的实数阵列 |
DFT_REAL_OUTPUT | 进行一维或二维复数数组反变换。这样的结果通常是一个大小相同的复矩阵。如果输入的矩阵有复数的共轭对称性(比如是一个带有DFT_COMPLEX_OUTPUT标识符的正变换结果),则会输出实矩阵 |
三.返回DFT最优尺寸大小:getOptimalDFTSize( )函数
- 作用:
用于计算扩充多少的图像来提高离散傅里叶变换的速度。 - 原型
int getOptimalDFTSize(int vecsize);
第一个参数:表示图片的rows and cols.
四.扩充图像边界:copyMakeBorder( )函数
void copyMakeBorder(InputArray src, OutputArray dst, int top, int bottom, int left, int right, int borderType, const Scalar& value=Scalar());
第一个参数:表示源图像
第二个参数:表示输出结果,需要与源图像有一样的尺寸和类型,且size应为Size(src.cols+left+right, src.rows+top+bottom)
第三/四/五/六个参数:表示在源图像的四个方向上扩充多少像素
第七个参数:表示边界类型。常见取值为BORDER_CONSTANT,可参考borderInterpolate( )
第八个参数:默认为0。若borderType取值为BORDER_CONSTANT时,表示为边界值
- 当图像的尺寸是2,3,5的整数倍时,计算速度最快。
五.计算二维矢量的幅值:magnitude( )函数
- 原理
- 原型
void magnitude(InputArray x, InputArray y, OutputArray magnitude);
第一个参数:表示矢量的浮点型x坐标值,也就是实部
第二个参数:表示矢量的浮点型y坐标值,也就是虚部
第三个参数:表示输出的幅值。和x有同样的尺寸和类型
六.计算自然对数:log( )函数
- 原理
- 原型
void log(InputArray src,OutputArray dst);
第一个参数:表示输入图像
第二个参数:表示得到的对数值
七.矩阵归一化:normalize( )函数
void normalize(InputArray src,OutputArray dst, double alpha = 1, double beta = 0, int norm_type = NORM_L2, int dtype = -1, InputArray mask = noArray());
第一个参数:表示源图像
第二个参数:表示输出图像。和源图像有同样 的尺寸和类型
第三/四个参数:表示归一化的最大值和最小值。默认为1和0
第五个参数:表示归一化的类型。默认为NORM_L2
NORM_MINMAX: 数组的数值被平移或缩放到一个指定的范围,线性归一化,一般较常用。
NORM_INF:归一化数组的C-范数(绝对值的最大值)
NORM_L1:归一化数组的L1-范数(绝对值的和)
NORM_L2:归一化数组的L2-范数(欧几里得)
第六个参数:默认为-1。当参数取值为负时,输出矩阵和输入矩阵有同样的尺寸和类型;否则,输出矩阵和输入矩阵只是通道数相同,且此时图像的深度为CV_MAT_DEPTH(dtype).
第七个参数:表示可选的操作掩膜。默认为noArray()
八.代码实现
#include <iostream>
#include <opencv2/opencv.hpp>
using namespace std;
using namespace cv;
int main()
{
Mat srcImage = imread("C://Users//441//Desktop//ZL//夏目//1.jpg", IMREAD_GRAYSCALE);
if (srcImage.empty())
{
cout << "读取图片错误!" << endl