学习OpenCV——Surf(特征点篇)&flann(二)

代码:                                                                                                             

来源:OpenCV/sample/c中的find_obj.cpp代码

 文章出处:http://blog.csdn.net/sangni007/article/details/7482960

仔细注意:

1.定位部分:通过透视变换,画出了目标在图像中的位置,但是这么做会浪费很多时间,可以改进:

2.flann寻找最近的临近Keypoints:

首先,利用图像,构建多维查找树,然后,利用Knn算法找到最近的Keypoints (KNN算法:http://blog.csdn.net/sangni007/article/details/7482890

  1. //Constructs a nearest neighbor search index for a given dataset  
  2. //利用m_image构造 a set of randomized kd-trees 一系列随机多维检索树;  
  3. cv::flann::Index flann_index(m_image, cv::flann::KDTreeIndexParams(4));  // using 4 randomized kdtrees  
  4. //利用Knn近邻算法检索m_object;结果存入 m_indices, m_dists;  
  5. flann_index.knnSearch(m_object, m_indices, m_dists, 2, cv::flann::SearchParams(64) ); // maximum number of leafs checked  

flann算法有很多功能,

文档:http://opencv.itseez.com/modules/flann/doc/flann_fast_approximate_nearest_neighbor_search.html?highlight=flann#fast-approximate-nearest-neighbor-search

 

  1. /* 
  2.  * A Demo to OpenCV Implementation of SURF 
  3.  * Further Information Refer to "SURF: Speed-Up Robust Feature" 
  4.  * Author: Liu Liu 
  5.  * liuliu.1987+opencv@gmail.com 
  6.  */  
  7. #include "opencv2/objdetect/objdetect.hpp"  
  8. #include "opencv2/features2d/features2d.hpp"  
  9. #include "opencv2/highgui/highgui.hpp"  
  10. #include "opencv2/calib3d/calib3d.hpp"  
  11. #include "opencv2/imgproc/imgproc_c.h"#include <iostream>  
  12. #include <vector>  
  13. #include <stdio.h>using namespace std;  
  14. void help()  
  15. {  
  16.     printf(  
  17.         "This program demonstrated the use of the SURF Detector and Descriptor using\n"  
  18.         "either FLANN (fast approx nearst neighbor classification) or brute force matching\n"  
  19.         "on planar objects.\n"  
  20.         "Usage:\n"  
  21.         "./find_obj <object_filename> <scene_filename>, default is box.png  and box_in_scene.png\n\n");  
  22.     return;  
  23. }// define whether to use approximate nearest-neighbor search  
  24. #define USE_FLANN  
  25. IplImage* image = 0;double compareSURFDescriptors( const float* d1, const float* d2, double best, int length )  
  26. {  
  27.     double total_cost = 0;  
  28.     assert( length % 4 == 0 );  
  29.     forint i = 0; i < length; i += 4 )  
  30.     {  
  31.         double t0 = d1[i  ] - d2[i  ];  
  32.         double t1 = d1[i+1] - d2[i+1];  
  33.         double t2 = d1[i+2] - d2[i+2];  
  34.         double t3 = d1[i+3] - d2[i+3];  
  35.         total_cost += t0*t0 + t1*t1 + t2*t2 + t3*t3;  
  36.         if( total_cost > best )  
  37.             break;  
  38.     }  
  39.     return total_cost;  
  40. }  
  41. int naiveNearestNeighbor( const float* vec, int laplacian,  
  42.                       const CvSeq* model_keypoints,  
  43.                       const CvSeq* model_descriptors )  
  44. {  
  45.     int length = (int)(model_descriptors->elem_size/sizeof(float));  
  46.     int i, neighbor = -1;  
  47.     double d, dist1 = 1e6, dist2 = 1e6;  
  48.     CvSeqReader reader, kreader;  
  49.     cvStartReadSeq( model_keypoints, &kreader, 0 );  
  50.     cvStartReadSeq( model_descriptors, &reader, 0 );    for( i = 0; i < model_descriptors->total; i++ )  
  51.     {  
  52.         const CvSURFPoint* kp = (const CvSURFPoint*)kreader.ptr;  
  53.         const float* mvec = (const float*)reader.ptr;  
  54.      CV_NEXT_SEQ_ELEM( kreader.seq->elem_size, kreader );  
  55.         CV_NEXT_SEQ_ELEM( reader.seq->elem_size, reader );  
  56.         if( laplacian != kp->laplacian )  
  57.             continue;  
  58.         d = compareSURFDescriptors( vec, mvec, dist2, length );  
  59.         if( d < dist1 )  
  60.         {  
  61.             dist2 = dist1;  
  62.             dist1 = d;  
  63.             neighbor = i;  
  64.         }  
  65.         else if ( d < dist2 )  
  66.             dist2 = d;  
  67.     }  
  68.     if ( dist1 < 0.6*dist2 )  
  69.         return neighbor;  
  70.     return -1;  
  71. }//用于找到两幅图像之间匹配的点对,并把匹配的点对存储在 ptpairs 向量中,其中物体(object)图像的特征点  
  72. //及其相应的描述器(局部特征)分别存储在 objectKeypoints 和 objectDescriptors,场景(image)图像的特  
  73. //征点及其相应的描述器(局部特征)分别存储在 imageKeypoints和 imageDescriptors  
  74. void findPairs( const CvSeq* objectKeypoints, const CvSeq* objectDescriptors,  
  75.            const CvSeq* imageKeypoints, const CvSeq* imageDescriptors, vector<int>& ptpairs )  
  76. {  
  77.     int i;  
  78.     CvSeqReader reader, kreader;  
  79.     cvStartReadSeq( objectKeypoints, &kreader );  
  80.     cvStartReadSeq( objectDescriptors, &reader );  
  81.     ptpairs.clear();    for( i = 0; i < objectDescriptors->total; i++ )  
  82.     {  
  83.         const CvSURFPoint* kp = (const CvSURFPoint*)kreader.ptr;  
  84.         const float* descriptor = (const float*)reader.ptr;  
  85.         CV_NEXT_SEQ_ELEM( kreader.seq->elem_size, kreader );  
  86.         CV_NEXT_SEQ_ELEM( reader.seq->elem_size, reader );  
  87.         int nearest_neighbor = naiveNearestNeighbor( descriptor, kp->laplacian, imageKeypoints, imageDescriptors );  
  88.         if( nearest_neighbor >= 0 )  
  89.         {  
  90.             ptpairs.push_back(i);  
  91.             ptpairs.push_back(nearest_neighbor);  
  92.         }  
  93.     }  
  94. }//Fast Library for Approximate Nearest Neighbors(FLANN)  
  95. void flannFindPairs( const CvSeq*, const CvSeq* objectDescriptors,  
  96.            const CvSeq*, const CvSeq* imageDescriptors, vector<int>& ptpairs )  
  97. {  
  98.  int length = (int)(objectDescriptors->elem_size/sizeof(float));    cv::Mat m_object(objectDescriptors->total, length, CV_32F);  
  99.  cv::Mat m_image(imageDescriptors->total, length, CV_32F);  
  100.  // copy descriptors  
  101.     CvSeqReader obj_reader;  
  102.  float* obj_ptr = m_object.ptr<float>(0);  
  103.     cvStartReadSeq( objectDescriptors, &obj_reader );  
  104.  //objectDescriptors to m_object   
  105.     for(int i = 0; i < objectDescriptors->total; i++ )  
  106.     {  
  107.         const float* descriptor = (const float*)obj_reader.ptr;  
  108.         CV_NEXT_SEQ_ELEM( obj_reader.seq->elem_size, obj_reader );  
  109.         memcpy(obj_ptr, descriptor, length*sizeof(float));  
  110.         obj_ptr += length;  
  111.     }  
  112.  //imageDescriptors to m_image  
  113.     CvSeqReader img_reader;  
  114.  float* img_ptr = m_image.ptr<float>(0);  
  115.     cvStartReadSeq( imageDescriptors, &img_reader );  
  116.     for(int i = 0; i < imageDescriptors->total; i++ )  
  117.     {  
  118.         const float* descriptor = (const float*)img_reader.ptr;  
  119.         CV_NEXT_SEQ_ELEM( img_reader.seq->elem_size, img_reader );  
  120.         memcpy(img_ptr, descriptor, length*sizeof(float));  
  121.         img_ptr += length;  
  122.     }    // find nearest neighbors using FLANN  
  123.     cv::Mat m_indices(objectDescriptors->total, 2, CV_32S);  
  124.     cv::Mat m_dists(objectDescriptors->total, 2, CV_32F);  
  125.  //Constructs a nearest neighbor search index for a given dataset  
  126.  //利用m_image构造 a set of randomized kd-trees 一系列随机多维检索树;  
  127.     cv::flann::Index flann_index(m_image, cv::flann::KDTreeIndexParams(4));  // using 4 randomized kdtrees  
  128.  //利用Knn近邻算法检索m_object;结果存入 m_indices, m_dists;  
  129.     flann_index.knnSearch(m_object, m_indices, m_dists, 2, cv::flann::SearchParams(64) ); // maximum number of leafs checked    int* indices_ptr = m_indices.ptr<int>(0);  
  130.     float* dists_ptr = m_dists.ptr<float>(0);  
  131.     for (int i=0;i<m_indices.rows;++i)   
  132.  {  
  133.      if (dists_ptr[2*i]<0.6*dists_ptr[2*i+1])  
  134.   {  
  135.       ptpairs.push_back(i);  
  136.       ptpairs.push_back(indices_ptr[2*i]);  
  137.      }  
  138.     }  
  139. }//用于寻找物体(object)在场景(image)中的位置,位置信息保存在参数dst_corners中,参数src_corners由物  
  140. //体(object的width几height等决定,其他部分参数如上findPairs  
  141. /* a rough implementation for object location */  
  142. int locatePlanarObject( const CvSeq* objectKeypoints, const CvSeq* objectDescriptors,  
  143.  const CvSeq* imageKeypoints, const CvSeq* imageDescriptors,  
  144.  const CvPoint src_corners[4], CvPoint dst_corners[4] )  
  145. {  
  146.     double h[9];  
  147.     CvMat _h = cvMat(3, 3, CV_64F, h);  
  148.     vector<int> ptpairs;  
  149.     vector<CvPoint2D32f> pt1, pt2;  
  150.     CvMat _pt1, _pt2;  
  151.     int i, n;#ifdef USE_FLANN  
  152.     flannFindPairs( objectKeypoints, objectDescriptors, imageKeypoints, imageDescriptors, ptpairs );  
  153. #else  
  154.     findPairs( objectKeypoints, objectDescriptors, imageKeypoints, imageDescriptors, ptpairs );  
  155. #endif    n = (int)(ptpairs.size()/2);  
  156.     if( n < 4 )  
  157.         return 0;    pt1.resize(n);  
  158.     pt2.resize(n);  
  159.     for( i = 0; i < n; i++ )  
  160.     {  
  161.         pt1[i] = ((CvSURFPoint*)cvGetSeqElem(objectKeypoints,ptpairs[i*2]))->pt;  
  162.         pt2[i] = ((CvSURFPoint*)cvGetSeqElem(imageKeypoints,ptpairs[i*2+1]))->pt;  
  163.     }    _pt1 = cvMat(1, n, CV_32FC2, &pt1[0] );  
  164.     _pt2 = cvMat(1, n, CV_32FC2, &pt2[0] );  
  165.     if( !cvFindHomography( &_pt1, &_pt2, &_h, CV_RANSAC, 5 ))//计算两个平面之间的透视变换  
  166.         return 0;    for( i = 0; i < 4; i++ )  
  167.     {  
  168.         double x = src_corners[i].x, y = src_corners[i].y;  
  169.         double Z = 1./(h[6]*x + h[7]*y + h[8]);  
  170.         double X = (h[0]*x + h[1]*y + h[2])*Z;  
  171.         double Y = (h[3]*x + h[4]*y + h[5])*Z;  
  172.         dst_corners[i] = cvPoint(cvRound(X), cvRound(Y));  
  173.     }    return 1;  
  174. }  
  175.   
  176. int main(int argc, char** argv)  
  177. {  
  178.  //物体(object)和场景(scene)的图像向来源  
  179.     const char* object_filename = argc == 3 ? argv[1] : "D:/src.jpg";  
  180.     const char* scene_filename = argc == 3 ? argv[2] : "D:/Demo.jpg";    help();    IplImage* object = cvLoadImage( object_filename, CV_LOAD_IMAGE_GRAYSCALE );  
  181.     IplImage* image = cvLoadImage( scene_filename, CV_LOAD_IMAGE_GRAYSCALE );  
  182.     if( !object || !image )  
  183.     {  
  184.         fprintf( stderr, "Can not load %s and/or %s\n",  
  185.             object_filename, scene_filename );  
  186.         exit(-1);  
  187.     }  
  188.  //内存存储器  
  189.     CvMemStorage* storage = cvCreateMemStorage(0);    cvNamedWindow("Object", 1);  
  190.     cvNamedWindow("Object Correspond", 1);    static CvScalar colors[] =   
  191.     {  
  192.         {{0,0,255}},  
  193.         {{0,128,255}},  
  194.         {{0,255,255}},  
  195.         {{0,255,0}},  
  196.         {{255,128,0}},  
  197.         {{255,255,0}},  
  198.         {{255,0,0}},  
  199.         {{255,0,255}},  
  200.         {{255,255,255}}  
  201.     };  
  202.     
  203.     IplImage* object_color = cvCreateImage(cvGetSize(object), 8, 3);  
  204.     cvCvtColor( object, object_color, CV_GRAY2BGR );    CvSeq* objectKeypoints = 0, *objectDescriptors = 0;  
  205.     CvSeq* imageKeypoints = 0, *imageDescriptors = 0;  
  206.     int i;  
  207.  /* 
  208.  CvSURFParams params = cvSURFParams(500, 1);//SURF参数设置:阈值500,生成128维描述符 
  209.  cvSURFParams 函数原型如下: 
  210.  CvSURFParams cvSURFParams(double threshold, int extended) 
  211.  { 
  212.   CvSURFParams params; 
  213.   params.hessianThreshold = threshold; // 特征点选取的 hessian 阈值 
  214.   params.extended = extended; // 是否扩展,1 - 生成128维描述符,0 - 64维描述符 
  215.   params.nOctaves = 4;  
  216.   params.nOctaveLayers = 2; 
  217.   return params; 
  218.  } 
  219.  */  
  220.  CvSURFParams params = cvSURFParams(500, 1);    double tt = (double)cvGetTickCount();//计时  
  221.  /* 
  222.  提取图像中的特征点,函数原型: 
  223.  CVAPI(void) cvExtractSURF( const CvArr* img, const CvArr* mask, 
  224.  CvSeq** keypoints, CvSeq** descriptors, 
  225.  CvMemStorage* storage, CvSURFParams params, int useProvidedKeyPts CV_DEFAULT(0) ); 
  226.  第3、4个参数返回结果:特征点和特征点描述符,数据类型是指针的指针, 
  227.  */  
  228.     cvExtractSURF( object, 0, &objectKeypoints, &objectDescriptors, storage, params );  
  229.     printf("Object Descriptors: %d\n", objectDescriptors->total);    cvExtractSURF( image, 0, &imageKeypoints, &imageDescriptors, storage, params );  
  230.     printf("Image Descriptors: %d\n", imageDescriptors->total);  
  231.     tt = (double)cvGetTickCount() - tt;    printf( "Extraction time = %gms\n", tt/(cvGetTickFrequency()*1000.));  
  232.     CvPoint src_corners[4] = {{0,0}, {object->width,0}, {object->width, object->height}, {0, object->height}};  
  233.     //定义感兴趣的区域  
  234.  CvPoint dst_corners[4];  
  235.     IplImage* correspond = cvCreateImage( cvSize(image->width, object->height+image->height), 8, 1 );  
  236.  //设置感兴趣区域  
  237.  //形成一大一小两幅图显示在同一窗口  
  238.     cvSetImageROI( correspond, cvRect( 0, 0, object->width, object->height ) );  
  239.     cvCopy( object, correspond );  
  240.     cvSetImageROI( correspond, cvRect( 0, object->height, correspond->width, correspond->height ) );  
  241.     cvCopy( image, correspond );  
  242.     cvResetImageROI( correspond );#ifdef USE_FLANN  
  243.     printf("Using approximate nearest neighbor search\n");  
  244. #endif  
  245.  //寻找物体(object)在场景(image)中的位置,并将信息保存(矩形框)  
  246.     if( locatePlanarObject( objectKeypoints, objectDescriptors, imageKeypoints,  
  247.         imageDescriptors, src_corners, dst_corners ))  
  248.     {  
  249.         for( i = 0; i < 4; i++ )  
  250.         {  
  251.             CvPoint r1 = dst_corners[i%4];  
  252.             CvPoint r2 = dst_corners[(i+1)%4];  
  253.    cvLine( correspond, cvPoint(r1.x, r1.y+object->height ),  
  254.     cvPoint(r2.x, r2.y+object->height ), colors[8] );  
  255.         }  
  256.     }  
  257.  //定义并保存物体(object)在场景(image)图形之间的匹配点对,并将其存储在向量 ptpairs 中,之后可以对  
  258.  //ptpairs 进行操作  
  259.     vector<int> ptpairs;  
  260. #ifdef USE_FLANN  
  261.     flannFindPairs( objectKeypoints, objectDescriptors, imageKeypoints, imageDescriptors, ptpairs );  
  262. #else  
  263.     findPairs( objectKeypoints, objectDescriptors, imageKeypoints, imageDescriptors, ptpairs );  
  264. #endif  
  265.  //显示匹配结果(直线连接)  
  266.     for( i = 0; i < (int)ptpairs.size(); i += 2 )  
  267.     {  
  268.         CvSURFPoint* r1 = (CvSURFPoint*)cvGetSeqElem( objectKeypoints, ptpairs[i] );  
  269.         CvSURFPoint* r2 = (CvSURFPoint*)cvGetSeqElem( imageKeypoints, ptpairs[i+1] );  
  270.         cvLine( correspond, cvPointFrom32f(r1->pt),  
  271.             cvPoint(cvRound(r2->pt.x), cvRound(r2->pt.y+object->height)), colors[8] );  
  272.     }    cvShowImage( "Object Correspond", correspond );  
  273.  //显示物体(object)的所有特征点  
  274.     for( i = 0; i < objectKeypoints->total; i++ )  
  275.     {  
  276.         CvSURFPoint* r = (CvSURFPoint*)cvGetSeqElem( objectKeypoints, i );  
  277.         CvPoint center;  
  278.         int radius;  
  279.         center.x = cvRound(r->pt.x);  
  280.         center.y = cvRound(r->pt.y);  
  281.         radius = cvRound(r->size*1.2/9.*2);  
  282.         cvCircle( object_color, center, radius, colors[0], 1, 8, 0 );  
  283.     }  
  284.     cvShowImage( "Object", object_color );    cvWaitKey(0); //释放窗口所占用的内存  
  285.     cvDestroyWindow("Object");  
  286.     cvDestroyWindow("Object Correspond");    return 0;  
  287. }  
  288.     


 

 

 


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值