为什么从第三天开始呢?因为前两天根本不知道写博客这一回事,从第三天开始记录,分享一下我的学习的过程,分享一下经验以及错误。同时方便我以后的复习。
今天是学习杨超三大计算中的泰勒以及无穷小的替换求极限。
1.泰勒展开的式子要熟记:tanx,sinx,arcsinx,arctanx,ln(x+1),expx,(1+x)^α,cosx;
泰勒展开求极限是要看分母和分子要上下同阶进行展开,同时分母有平方时泰勒展开要展开对应的阶数,避免漏项,如(sinx)^2,要根据具体情况决定括号里面要具体展开到哪一项;
遇到x->∞时,可以进行倒带法进行解题,如t=1/x等等;遇到分母或分子出现根号-根号的情况,根据题目可以进行分母或分子有理化,这样处理大部分会出现非零数字可以直接带入。
2.无穷小替换法求极限:无穷小替换的8个公式要熟记;其中公式可以进行变形,如:
(1+x)^α-1~αx根据具体题目可以变成[1+f(x)]^α~1-αf(x);e^f(x)-1~f(x),
e^f(x)-e^g(x)=e^g(x)[e^(f(x)-g(x))-1]~k[f(x)-g(x)],这时e^g(x)充当非零因子k,f(x)-g(x)充当无穷小量;
ln(x+1)推广为lnf(x),f(x)~1,lnf(x)=ln(1+f(x)-1)~f(x)-1,即lnf(x)~f(x)-1