[计算机视觉多视图几何] -- Homography

Homography求解与基于eigen库的c++实现



在这里插入图片描述

前言

在使用标志物识别与跟踪技术中,利用homography来描述两个视图中标志物平面之间的映射关系。

一、理论推导

当两个视图中拥有相同的一个平面时,可以根据平面来估计视图之间的映射关系,并称之为单应性矩阵。

在世界中一个点 P [ X , Y , Z ] P[X,Y,Z] P[X,Y,Z],在两张图像中的位置分别为 p 1 , p 2 p_1,p_2 p1,p2,则有下列关系:
n T P + d = 0 \boldsymbol n^T\boldsymbol P+d=0 nTP+d=0

− n T P d = 1 -\frac{\boldsymbol n^T\boldsymbol P}{d}=1 dnTP=1

同一点在两张视图中的映射关系:
p 1 = K ( P ) \boldsymbol p1 = K(\boldsymbol P) p1=K(P)

p 2 = K ( R P + t ) \boldsymbol p_2=K(\boldsymbol R\boldsymbol P+\boldsymbol t) p2=K(RP+t)

p 2 = K ( R P − t n T P d ) \boldsymbol p_2 = K(\boldsymbol R \boldsymbol P - \boldsymbol t\frac{\boldsymbol n^T\boldsymbol P}{d}) p2=K(RPtdnTP)

p 2 = K ( R − t n T d ) P \boldsymbol p_2 = \boldsymbol K(\boldsymbol R-\boldsymbol t\frac{\boldsymbol n^T}{d})\boldsymbol P p2=K(RtdnT)P

p 2 ∼ K ( R − t n T d ) K − 1 p 1 \boldsymbol p_2 \sim \boldsymbol K(\boldsymbol R-\boldsymbol t\frac{\boldsymbol n^T}{d})\boldsymbol K^{-1}\boldsymbol p_1 p2K(RtdnT)K1p1

所以,化简得到点的映射关系:
p 2 ∼ H p 1 \boldsymbol p_2 \sim \boldsymbol H \boldsymbol p_1 p2Hp1

( u 2 v 2 1 ) ∼ ( h 1 h 2 h 3 h 4 h 5 h 6 h 7 h 8 h 9 ) (

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值