logistic回归算法原理及python实现

1 logistic回归与sigmoid函数

考虑如下线性函数:

y=wwTxx+b(1)

输出 y 为连续的实值,如何让输出成为二值来完成二分类任务?即 y{0,1} ,最理想的是单位阶跃函数即:
y=0,z<00.5,z=01,z>0(2)

但是,单位阶跃函数不连续,不利于求解权值,构建模型。于是sigmoid函数(对数几率函数,logistic function)出现了,他单调可微,并且形似阶跃函数,其公式描述如下所示:
y=11+e(wwTxx+b)(3)

sigmoid曲线如下图所示:

sigmoid曲线

y 表示当输入为 x 时,输出为正例的概率(可能性),即 y=P(Y=1|X=x) , 1y 表示当输入为 x 时,输出为反例的概率(可能性),即 1y=P(Y=0|X=x) ,两者的比值 y1y 称为几率(odds),对其取对数即达到对数几率,所以logistic回归又称为对数几率回归。因此根据(2)可得对数几率回归(logistic回归)公式如下所示:

logy1y=wwTxx+b(4)

2 二项逻辑斯蒂回归模型与参数估计

由式(3)可得二项逻辑斯蒂回归模型如下所示:

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

墨岚❤️

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值