【论文摘要】An Empirical Study of Content Understanding in Conversational Question Answering

本文探讨在QuAC和CoQA数据集上训练的模型是否真正理解文本内容,通过实验揭示模型可能更依赖答案位置而非文本本身。论文通过Repeat Attack等方法证明模型在某些情况下仅依据位置信息即可作出预测,暗示当前模型在对话式问答中的局限性,为改进数据集和模型设计提供了方向。
摘要由CSDN通过智能技术生成

本文仅为个人对论文的一点理解,如果有不对的地方烦请指正

戳我看论文原文

论文背景

\quad 机器阅读理解(machine reading comprehension)是NLP领域中一个很有代表性的任务,大体形式是给AI一些信息,向它提出问题,希望其理解文本内容并找到问题的答案。

\quad 用多轮对话的形式来进行问答是当下机器阅读理解当中一个非常重要的任务,这样的情景更接近于真实的应用环境(对于提问方没有多余的限制,只需要像正常说话一样提出问题即可,并且提出的问题的答案可能和上次提出的问题相关,e.g. Q1:谁做了XXX? Q2:他长什么样?)

\quad 在这个领域中有两个比较有代表性的训练数据集QuAC和CoQA,他们都是人工制造的数据集,在制造数据集时,提问者和回答者通过对话的方式对给定的文本进行多轮的问答,两个模型中的问题均和历史对话有很强的联系,大量的问题需要从历史对话中获取信息。

\quad

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值