本文仅为个人对论文的一点理解,如果有不对的地方烦请指正
论文背景
\quad 机器阅读理解(machine reading comprehension)是NLP领域中一个很有代表性的任务,大体形式是给AI一些信息,向它提出问题,希望其理解文本内容并找到问题的答案。
\quad 用多轮对话的形式来进行问答是当下机器阅读理解当中一个非常重要的任务,这样的情景更接近于真实的应用环境(对于提问方没有多余的限制,只需要像正常说话一样提出问题即可,并且提出的问题的答案可能和上次提出的问题相关,e.g. Q1:谁做了XXX? Q2:他长什么样?)
\quad 在这个领域中有两个比较有代表性的训练数据集QuAC和CoQA,他们都是人工制造的数据集,在制造数据集时,提问者和回答者通过对话的方式对给定的文本进行多轮的问答,两个模型中的问题均和历史对话有很强的联系,大量的问题需要从历史对话中获取信息。
\quad