- 博客(50)
- 收藏
- 关注
原创 AutoAlignV2:基于可变形特征聚合的动态多模态3D目标检测
点云和 RGB 图像是自动驾驶中两种常见的感知源。前者可以提供物体的准确定位,后者语义信息更密集、更丰富。最近,AutoAlign 提出了一种可学习的范例,将这两种模式结合起来进行 3D 目标检测。然而,它受限于全局注意力带来的高计算成本。为了解决这个问题,在这项工作中提出了Cross-Domain Deform CAFA模块。它关注跨模态关系建模的稀疏可学习采样点,增强了对校准误差的容忍度,并大大加快了不同模态的特征聚合速度。
2024-04-07 16:51:25 1117
原创 [论文阅读]Multimodal Virtual Point 3D Detection
Multimodal Virtual Point 3D Detection论文阅读
2023-12-12 17:08:56 1696
原创 [论文阅读]Point Density-Aware Voxels for LiDAR 3D Object Detection(PDV)
PDV论文阅读
2023-10-24 20:04:50 4511
原创 [论文阅读]VirConv(KITTI SOTA 2023.10.17)——用于多模态 3D 目标检测的虚拟稀疏卷积
KITTI SOTA VirConv论文阅读
2023-10-18 17:55:49 8795 2
原创 [论文阅读]KD——神经网络中的知识提取(知识蒸馏)
提高几乎任何机器学习算法性能的一个非常简单的方法是在相同的数据上训练许多不同的模型,然后对它们的预测进行平均[Ensemble methods in machine learning]。不幸的是,使用整个模型集合进行预测是很麻烦的,而且计算开销太大,不允许部署到大量用户,尤其是如果单个模型是大型神经网络。[Model compression]已经表明,将集合中的知识压缩到一个更容易部署的单一模型是可能的,本文使用不同的压缩技术进一步发展了这种方法。
2023-09-12 14:12:55 14649
最全面的 OpenCV 笔记
2023-11-30
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人