- 博客(53)
- 收藏
- 关注
原创 SimpleBEV:改进的激光雷达-摄像头融合架构用于三维目标检测
越来越多的研究工作将激光雷达(LiDAR)与摄像头信息进行融合,以提升自动驾驶系统的三维目标检测性能。近期,一种简单而高效的融合框架在三维目标检测上取得了优异的性能,该框架在统一的鸟瞰图(BEV, Bird’s-Eye-View)空间中融合了激光雷达与摄像头特征。本文提出了一种名为 SimpleBEV 的激光雷达-摄像头融合框架,用于高精度的三维目标检测。该方法遵循基于 BEV 的融合范式,并分别改进了摄像头与激光雷达的编码器。
2025-09-26 21:34:09
1088
原创 MV2DFusion:利用模态特定目标语义进行多模态三维检测
自动驾驶汽车的兴起,显著提升了人们对鲁棒三维目标检测系统的需求。相机与激光雷达各自具备独特优势:前者纹理信息丰富,后者则提供精确的三维空间数据;然而,仅依赖单一模态往往导致性能受限。本文提出多模态检测框架 MV2DFusion,通过先进的基于查询的融合机制,将两者的优势整合于一体。MV2DFusion 引入图像查询生成器以对齐图像特有属性,并配备点云查询生成器,能够在不偏袒任一模态的前提下,有效融合模态特定的目标语义。随后,基于这些宝贵的目标语义完成稀疏融合,确保在各种场景下都能实现高效且精准的目标检测。该
2025-09-22 16:47:15
893
原创 EA-LSS:边缘感知 Lift-splat-shot 框架用于三维鸟瞰视角目标检测
近年来,基于 Lift-Splat-Shot(LSS)的三维目标检测方法取得了显著进展。然而,深度估计不准仍是制约纯视觉及多模态三维检测模型精度的关键瓶颈,尤其在深度突变区域(即“深度跳变”问题)。本文提出了一种新颖的边缘感知 Lift-Splat-Shot(EA-LSS)框架。具体而言,我们设计了边缘感知深度融合(EADF)模块来缓解“深度跳变”问题,并引入细粒度深度(FGD)模块进一步加强对深度的精细化监督。
2025-09-20 22:35:01
1189
2
原创 AutoAlignV2:基于可变形特征聚合的动态多模态3D目标检测
点云和 RGB 图像是自动驾驶中两种常见的感知源。前者可以提供物体的准确定位,后者语义信息更密集、更丰富。最近,AutoAlign 提出了一种可学习的范例,将这两种模式结合起来进行 3D 目标检测。然而,它受限于全局注意力带来的高计算成本。为了解决这个问题,在这项工作中提出了Cross-Domain Deform CAFA模块。它关注跨模态关系建模的稀疏可学习采样点,增强了对校准误差的容忍度,并大大加快了不同模态的特征聚合速度。
2024-04-07 16:51:25
1648
原创 [论文阅读]Multimodal Virtual Point 3D Detection
Multimodal Virtual Point 3D Detection论文阅读
2023-12-12 17:08:56
2601
原创 [论文阅读]Point Density-Aware Voxels for LiDAR 3D Object Detection(PDV)
PDV论文阅读
2023-10-24 20:04:50
4865
原创 [论文阅读]VirConv(KITTI SOTA 2023.10.17)——用于多模态 3D 目标检测的虚拟稀疏卷积
KITTI SOTA VirConv论文阅读
2023-10-18 17:55:49
10444
2
最全面的 OpenCV 笔记
2023-11-30
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人