HDU 2058 The sum problem

The sum problem

Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 22620    Accepted Submission(s): 6691


Problem Description
Given a sequence 1,2,3,......N, your job is to calculate all the possible sub-sequences that the sum of the sub-sequence is M.
 

Input
Input contains multiple test cases. each case contains two integers N, M( 1 <= N, M <= 1000000000).input ends with N = M = 0.
 

Output
For each test case, print all the possible sub-sequence that its sum is M.The format is show in the sample below.print a blank line after each test case.
 

Sample Input
  
  
20 10 50 30 0 0
 

Sample Output
  
  
[1,4] [10,10] [4,8] [6,9] [9,11] [30,30]
 

Author
8600

刚开始我直接用的暴力,然后直接超时,去网上看了一下他们的代码,发现是个数学题。
是对公式的变形,对数学基础的考察。
等差数列的运用。S n = (a 1+a n) * n / 2 = (a 1 + a 1 + (n - 1) * d)*n/2。

解题公式变形:(a+a+len)*(len+1)/2 = m => a = m/(len+1)-len/2 (m是已知条件,len的最大值为sqrt(2*m))。

在这里声明一下:公差是1,由求和公式得Sn = (a1+an) * n / 2;所以说n最大就是sqrt(M*2),因为a1=1  an=n  n趋向无穷大时1就可以忽略了,所以n最大就是sqrt(M*2)。

#include <stdio.h>
#include <math.h>

int main()
{
	int n,m,len,a;
	
	while(~scanf("%d%d",&n,&m),(n||m))
	{
		len=(int )sqrt(2*m);
		
		while(len--)
		{
			a=m/(len+1)-len/2;
			if((2*a+len)*(len+1)/2==m)
				printf("[%d,%d]\n",a,a+len);
		}
		printf("\n");
	}
	
	
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值