这题吼厉害呀,Orz cls
假设我们知道了最终串T,考虑求T和S求LCS的过程,f[i][j]表示串T的前i位和串S的前j位的LCS最长是多少,有
f[i][j]=max(f[i−1][j],f[i][j−1],f[i−1][j−1]+1)
易证
0<=f[i][j]−f[i][j−1]<=1
,我们可以对这个状态差分,用一个二进制数mask表示差分后的结果,f[i][mask]表示决定了T的前i位,f[i][j]的差分结果为mask,T的方案数,预处理每个状态接上每种字母后的状态后做个dp
这个东西又叫dp套dp
O(m2|S|)
code:
#include<set>
#include<map>
#include<deque>
#include<queue>
#include<stack>
#include<cmath>
#include<ctime>
#include<bitset>
#include<string>
#include<vector>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<climits>
#include<complex>
#include<iostream>
#include<algorithm>
#define ll long long
using namespace std;
const int maxn = 1100;
const int mask = 1<<16;
const int mod = 1e9+7;
inline void add(int &a,const int &b){a+=b;if(a>=mod) a-=mod;}
inline void up(int &a,const int &b){if(a<b)a=b;}
int n,m,al;
int s[maxn],cc[maxn];
char str[maxn];
int f[2][mask];
struct edge{int y,nex;}a[mask<<2]; int len,fir[mask];
inline void ins(const int x,const int y){a[++len]=(edge){y,fir[x]};fir[x]=len;}
int t[maxn];
void pre()
{
for(int i=1;i<=m;i++) s[i]=cc[str[i]];
al=1<<m;
len=0; for(int i=0;i<al;i++) fir[i]=0;
for(int i=0;i<al;i++) for(int k=0;k<4;k++)
{
for(int j=1;j<=m;j++) t[j]=t[j-1]+(i>>j-1&1);
for(int j=m;j>=1;j--)
if(s[j]==k) up(t[j],t[j-1]+1);
for(int j=1;j<=m;j++) up(t[j],t[j-1]);
for(int j=m;j>=1;j--) t[j]-=t[j-1];
int now=0;
for(int j=1;j<=m;j++) if(t[j]) now|=1<<j-1;
ins(i,now);
}
}
int ans[maxn];
int main()
{
cc['A']=0,cc['G']=1,cc['C']=2,cc['T']=3;
int tcase; scanf("%d",&tcase);
while(tcase--)
{
scanf("%s",str+1); m=strlen(str+1); pre();
scanf("%d",&n);
int now=0; memset(f,0,sizeof f);
f[now][0]=1;
for(int i=1;i<=n;i++)
{
now=!now;
for(int j=0;j<al;j++) if(f[!now][j])
{
int &temp=f[!now][j];
for(int k=fir[j],y=a[k].y;k;k=a[k].nex,y=a[k].y)
add(f[now][y],temp);
temp=0;
}
}
for(int i=0;i<=m;i++) ans[i]=0;
for(int i=0;i<al;i++)
{
int k=0;
for(int j=1;j<=m;j++) k+=i>>j-1&1;
add(ans[k],f[now][i]);
}
for(int i=0;i<=m;i++) printf("%d\n",ans[i]);
}
return 0;
}