教材信息: 数值分析(第二版) 李红 华中科技大学出版社
Gauss-Legendre Ⅱ型求积公式
[a,b]区间上的3点高斯-拉格朗日(Gauss-Legendre)复化求积公式
∫
a
b
f
(
x
)
d
x
≈
h
9
∑
k
=
0
2
n
−
2
{
5
[
f
(
x
k
+
1
−
h
5
3
)
+
f
(
x
k
+
1
+
h
5
3
)
]
+
8
f
(
x
k
+
1
)
}
\int_a^b f(x)dx \approx \frac{h}{9} \sum_{k=0}^{2n-2} \big\{5[f( x_{k+1}-h \sqrt{ \frac{5}{3}} ) +f( x_{k+1}+h \sqrt{ \frac{5}{3}} )]+ 8 f(x_{k+1})\big\}
∫abf(x)dx≈9hk=0∑2n−2{5[f(xk+1−h35)+f(xk+1+h35)]+8f(xk+1)}
与原书不同的地方使用红色标出:
在累加区间和节点下标进行了调整
X k + 2 X_{k+2} Xk+2推导
x
k
=
a
+
k
h
x_{k}=a+kh
xk=a+kh
x
k
+
2
=
a
+
k
h
+
2
h
x_{k+2}=a+kh+2h
xk+2=a+kh+2h
x
k
+
x
k
+
2
2
=
2
a
+
2
k
h
+
2
h
2
=
a
+
k
h
+
h
=
x
k
+
1
\frac{x_{k}+x_{k+2}}{2} = \frac{2a+2kh+2h}{2} =a+kh+h=x_{k+1}
2xk+xk+2=22a+2kh+2h=a+kh+h=xk+1
说明
此复化求积公式就是对上式(见书) [ x k , x k + 2 ] [x_{k},x_{k+2}] [xk,xk+2]区间上三点Gauss-Legendre(以下简称G-L)的累加,只是进行了一些形式上的简单变形。
QA
为什么复化高斯-拉格朗日(Gauss-Legendre)求积公式不需要像牛顿-柯特斯(Newton-Cotes)公式一样对部分节点乘以倍数
形式上:
因为G-L公式不存在求积节点共用,而Newton-Cotes公式(以下简称N-C)存在节点共用
思想上:
N-C公式是从几何意义上直观的逼近积分,如脱胎于梯形面积公式的梯形公式(p88 4.1),在梯形面积公式上又叠了一层中点三角型面积的辛普森公式(p89 4.3),这些面积公式共同的特点就是会用到端点函数值,出于简化算式形式的考虑,就将这些重复运算的端点折叠成了公式中某些节点前乘以的倍数。
如复化梯形公式中的2(p97 4.18),复化辛普森公式中的4、2(p98 4.21)
G-L公式是从代数层面上逼近积分。复化G-L公式选取每段区间内拉格朗日正交多项式的零点作为Gauss点,该零点不位于区间端点,因此不存在求积节点共用。但这也导致了更大的计算量。
如12段3点复化G-L公式要计算12*3=36个节点
而12段3点复化simpson公式要计算36-11=25个节点
为什么在节点数一定时高斯-拉格朗日(Gauss-Legendre)求积公式具有最高的代数精度
G-L公式在以代数精度为优化目标的前提下,同时将节点位置、节点权重 (求积系数)纳入考量,因此能够达到一定求积节点个数(n+1)下,最高的代数精度(2n+1)