Matlab实现LMDI分解方法(含零值处理)

本文介绍了如何使用Matlab进行LMDI影响因素分解分析,该方法常用于环境影响评估。通过提供的Matlab代码示例,展示了如何处理数据并计算各因素对总变化的贡献率,包括对0值的特殊处理。数据实例为2000年至2014年间15年的因变量Y和7个自变量X的变化情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

影响因素分解分析常使用对数平均迪氏指数法 (Logarithmic Mean Index Method, LMDI),其理论基础和Python实现请参考 LMDI 理论推导详解【从理论到Python-MATLAB实现(理论)】LMDI 理论推导详解【从理论到Python-MATLAB实现(编程实现)】 ,0值部分的处理参考 LMDI 理论推导详解【从理论到Python-MATLAB实现(理论)】,本文仅讨论LMDI的Matlab实现。

Matlab参考代码如下:

% X 为多列(含1列)的自变量数据,按照时间升序排列,第一行数据为第一年,第二行数据为第二年,...
X = xlsread(Xfilepath);
% Y 为因变量数据,按照时间升序排列,第一行数据为第一年,第二行数据为第二年,...
Y = xlsread(Yfilepath);

dertX = [];
for i = 2 : length(Y)
    curdertX = [];
    for j = 1 : size(X, 2)
        curdert = (Y(i) - Y(1)) / (log(Y(i) / Y(1))) * log(X(i, j) / X(1, j));
        
        % 0 value
        if Y(i) * Y(1) * X(i, j) * X(1, j) == 0
            curdert = 0;
        end
        if Y(i) > 0 && Y(1) == 0 && X(i, j) > 0 && X(1, j) == 0
            curdert = Y(i);
        end
        if Y(i) == 0 && Y(1) > 0 && X(i, j) == 0 && X(1, j) > 0
            curdert = -Y(1);
        end
        
        curdertX = [curdertX, curdert];
    end
    dertX = [dertX; curdertX];
end

结合实例说明,选取2000~2014年间15年的数据,因变量是Y,自变量为X(共7个因素),年份为Years,参考代码如下:

%%
Y = [
    45.095; 49.556; 55.905; 64.706; 65.834; 74.213; 82.912; 90.793; ...
    98.330; 108.624; 130.310; 210.232; 212.156; 245.704; 256.856
    ];

X = [
    2.375 	0.551 	0.301 	0.522 	0.302 	0.096 	0.027
    2.259 	0.576 	0.308 	0.496 	0.311 	0.109 	0.028
    2.146 	0.553 	0.313 	0.513 	0.322 	0.122 	0.029
    2.054 	0.640 	0.310 	0.437 	0.332 	0.135 	0.031
    1.990 	0.682 	0.327 	0.388 	0.343 	0.148 	0.033
    1.944 	0.557 	0.399 	0.443 	0.354 	0.161 	0.034
    1.898 	0.516 	0.399 	0.480 	0.364 	0.174 	0.038
    1.848 	0.457 	0.408 	0.525 	0.382 	0.186 	0.040
    1.809 	0.432 	0.426 	0.533 	0.402 	0.187 	0.044
    1.781 	0.421 	0.436 	0.534 	0.424 	0.197 	0.050
    1.760 	0.407 	0.441 	0.544 	0.444 	0.214 	0.054
    1.745 	0.415 	0.413 	0.558 	0.462 	0.198 	0.058
    1.726 	0.401 	0.434 	0.554 	0.477 	0.181 	0.061
    1.697 	0.373 	0.483 	0.542 	0.492 	0.181 	0.069
    1.652 	0.370 	0.470 	0.554 	0.509 	0.160 	0.074
    ];

Years = (2000 : 2014)';

dertX = [];
for i = 2 : length(Y)
    curdertX = [];
    for j = 1 : size(X, 2)
        curdert = (Y(i) - Y(1)) / (log(Y(i) / Y(1))) * log(X(i, j) / X(1, j));
        
        % 0 value
        if Y(i) * Y(1) * X(i, j) * X(1, j) == 0
            curdert = 0;
        end
        if Y(i) > 0 && Y(1) == 0 && X(i, j) > 0 && X(1, j) == 0
            curdert = Y(i);
        end
        if Y(i) == 0 && Y(1) > 0 && X(i, j) == 0 && X(1, j) > 0
            curdert = -Y(1);
        end
        
        curdertX = [curdertX, curdert];
    end
    dertX = [dertX; curdertX];
end

outresult = [Years(2 : length(Years)), dertX];

输出结果为:

>> outresult

outresult =
  
    2001	-2.368      2.098       1.087 	-2.416 	1.389 	6.006 	1.720 
    2002	-5.101      0.182       1.967 	-0.875 	3.226 	12.057 	3.595 
    2003	-7.887      8.132       1.600 	-9.653 	5.144 	18.516 	7.503 
    2004	-9.694      11.691      4.541 	-16.261 6.978 	23.726 	10.999 
    2005	-11.705 	0.633       16.474 	-9.592 	9.286 	30.222 	13.474 
    2006	-13.922 	-4.075      17.502 	-5.209 	11.595 	36.929 	21.221 
    2007	-16.383 	-12.215 	19.862 	0.374 	15.345 	43.190 	25.666 
    2008	-18.590 	-16.615 	23.719 	1.424 	19.532 	45.532 	33.349 
    2009	-20.799 	-19.446 	26.776 	1.642 	24.520 	51.948 	44.528 
    2010	-24.066 	-24.326 	30.671 	3.315 	30.949 	64.375 	55.663 
    2011	-33.065 	-30.407 	33.934 	7.154 	45.605 	77.655 	82.020 
    2012	-34.435 	-34.282 	39.478 	6.419 	49.312 	68.413 	87.928 
    2013	-39.774 	-46.167 	55.958 	4.449 	57.750 	75.038 	111.024 
    2014	-44.186 	-48.473 	54.241 	7.242 	63.540 	62.177 	122.721 

对于部分人说结果不一样:

在这里插入图片描述

拜托看看前面乘以了一个系数。

评论 27
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

A-Chin

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值