番外—数学建模之LMDI模型附其Matlab代码样例

本文介绍了LMDI模型的特点,其在能源和污染排放分析中的应用,以及如何通过Kaya模型进行数据处理和分解碳排放影响因素。示例展示了如何使用该模型计算各因素对碳排放的贡献,提出通过提高能源效率和非化石能源消费以实现双碳目标的策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一.LMDI模型介绍

LMDI方法具有以下特性:不包括不能解释的残差项,乘法分解的结果有加法特性,加法分解和乘法分解之间存在简单的对应关系,分部门效应加总与总效应保持一致等[1]。

二.模型适用范围

适用于能源强度变动和污染排放强度变动的因素分解分析。目前LMDI多数应用于碳排放、经济增长、技术融合度、行业就业人口、竞争力等领域。用简单的话来说,运用LMDI模型之后可以得到每个自变量对其因变量的贡献率。

三、模型使用方法和代码样例

例:2023华为杯研究生数学建模竞赛D题问题1中“分析对该区域碳排放量产生影响的各因素及其贡献
准备数据包括自变量和因变量,通常这些数据是一一系列时间点的观测值。
对因变量和自变量取对数,这是LMDI的核心部分,通过取对数可以将分解转化为可加性的形式,方便分析。
计算初始年和最终年的因变量总和,以及每个自变量的初始年和最终年总和。在对数化的数据上执行这些计算。
计算因变量总和的增长率,通常是最终年总和与初始年总和的比率减去1。
计算每个自变量对总增长率的贡献。这是通过计算自变量的比率变化(最终年与初始年的比率减去1)与其在总和中的权重来实现的。
将增长率和每个自变量的贡献相乘,以获得LMDI分解的每个成分。
分析LMDI分解的各个成分,以理解哪些因素对因变量的变化有更大的贡献。

基于Kaya模型[2]:二氧化碳排放量=人口×人均GDP×单位GDP能耗×单位能耗二氧化碳排放量
数学表达式如下:CO2=P * GDP/P * E/GDP * CO2/E
式中,CO2是二氧化碳排放量;P是人口;GDP/P是人均GDP;E/GDP是单位GDP能耗;CO2/E是单位能耗二氧化碳排放量。
将某东南沿海区域2010年至2020年间总碳排量、人口、GDP、能源消费量导入Excel表格中。图1:原数据
并基于Kaya公式对其进行数据预处理。
图2:预处理后的数据

% 导入你的数据,假设数据在一个名为'data.xlsx'的Excel文件中
data = xlsread('data.xlsx');

% 提取自变量和因变量
independent_vars = data(:, 1:4);
dependent_var = data(:, 5);

% 计算初始年和最终年的因变量总和
initial_year_total = sum(log(dependent_var(1)));
final_year_total = sum(log(dependent_var(end)));

% 计算每个自变量的初始年和最终年总和
initial_year_sum = sum(log(independent_vars(1, :)));
final_year_sum = sum(log(independent_vars(end, :)));

% 计算增长率
growth_rate = final_year_total - initial_year_total;

% 计算分解成分
component_changes = (log(independent_vars(end, :) / final_year_sum) - log(independent_vars(1, :) / initial_year_sum));
LMDI_components = growth_rate * component_changes;

% 输出结果
disp('LMDI Components:');
disp(LMDI_components);

运行结果如下:

LMDI Components:
    0.0122    0.1483   -0.1092   -0.0193

观察结果可知,在此区域中对总碳排量贡献相对较大的是人均GDP和单位GDP能耗,而其中单位GDP能耗和单位能耗二氧化碳排放量对总碳排量是负贡献。同时,单位GDP能耗也可以理解为区域能源利用效率,单位能耗二氧化碳排放量与非化石能源消费比重成反比,但此区域中非化石能源消费比重提高对碳排量做正贡献,因此若想在此区域实现碳达峰和碳中和的双碳目标,必须在提高非化石能源消费比重的同时提高能源利用效率并实现产业产品升级,以此进一步减少非化石能源的碳排放因子。

四:参考文献

[1]张平淡,朱松,朱艳春.环保投资对中国SO_2减排的影响——基于LMDI的分解结果[J].经济理论与经济管理,2012(07):84-94.
[2]唐杰等,基于Kaya模型的碳排放达峰实证研究[J],深圳社会科学,第5卷第3期,2022年5月,第50-59页

个人理解,若有不妥,敬请指出

### LMDI模型的R语言实现 对于LMDI-I和LMDI-II模型,在R中可以通过编写函数来分别计算乘法和加法形式的结果。以下是具体的代码: #### 加法型LMDI-I模型 ```r additive_LMDI_I <- function(data, time_series) { n <- length(time_series) delta_y <- diff(log(data)) weights <- rep(1 / (n - 1), n - 1) contribution <- sapply(2:n, function(t) { sum(delta_y * weights[t-1]) }) return(contribution) } ``` 此部分实现了基于时间序列数据的加法型LMDI-I模型,其中权重被设定为均匀分布[^1]。 #### 乘法型LMDI-I模型 ```r multiplicative_LMDI_I <- function(data, time_series) { n <-1] / data[-n] weights <- exp(-seq(0, 1, length.out=n-1)) contribution <- sapply(2:n, function(t) { prod(ratio^(weights[t-1])) }) return(contribution) } ``` 这段代码展示了如何利用指数衰减作为权重来构建乘法型LMDI-I模型。 #### 加法型LMDI-II模型 ```r additive_LMDI_II <- function(data, time_series) { n <- length(time_series) delta_y <- diff(log(data)) avg_data <- rowMeans(embed(data, 2)) contribution <- sapply(2:n, function(t) { delta_y[t-1] * avg_data[t-1] }) return(contribution) } ``` 这里定义了一个新的平均值`avg_data`用于调整贡献度量方式,从而形成加法型LMDI-II模型。 #### 乘法型LMDI-II模型 ```r multiplicative_LMDI_II <- function(data, time_series) { n <-1] / data[-n] avg_ratio <- sqrt(ratio) contribution <- sapply(2:n, function(t) { prod(avg_ratio^(ratio[t-1]-1)) }) return(contribution) } ``` 上述代码通过平方根处理比率以创建更平滑的变化模式,适用于乘法型LMDI-II模型
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值