文章目录
前言
本文记录了安装TensorFlow-gpu版本的全教程。
安装TensorFlow-gpu版本需要安装Python环境、TensorFlow-gpu、cuda工具、cudnn GPU加速库。
本文Python环境:3.7
编辑器:Pycharm
TensorFlow-gpu:2.2.0
cuda工具:10.1
cudnn:10.1 for windows v8.04.30 混合 10.1 for windows v7.65.32中的cudnn64_7.dll文件才不会报错。(文件链接在文末)
提示:以下是本篇文章正文内容,下面案例可供参考
一、前期环境检查
1、版本对应
这里给出一些tensorflow-gpu版本与cuda与cudnn版本对应(仅供参考):点击这里
2、检查自己电脑可支持的最高cuda版本
打开Nvidia显卡控制面板,点开左下角的系统信息,点击组件。如下图所示:
一般安装的cuda工具低于等于自己驱动的版本就可以了。如果自己驱动版本太低,可以去官网下载新版的驱动装一下。(tensorflow-gpu版本2.0最低也要cuda版本10)
二、安装步骤
1、Python环境
省略
2、TensorFlow-gpu安装
在Pycharm的终端用pip命令进行安装,鉴于直接安装可能会失败。这里直接用阿里云的镜像安装。同时指定2.2.0版本安装,高版本的有bug。
如&#x