环境调试心得:我的是tensorflow2.2.0+cpu+python
在调试时可能会遇到很多报错,不过几乎都跟tensorflow版本有关,几乎都可以通过tf.compat.v1.来转换版本解决。
trainyolo.py是调好的可训练;train.py是yolo3训练源码,两者代码一样,只是把报错的代码加了compat.v1.
1.用pycharm打开工程时应直接打开最终工程文件夹,不能直接打开初始父文件夹
2.大概有五六处报错,几乎都是tensorflow版本或者keras版本问题
都通过修改tf.compat.v1.改通过
如把:
sess = tf.keras.backend.get_session()
改为如下即可:
sess=tf.compat.v1.keras.backend.get_session()
原文链接:https://blog.csdn.net/qq_45504119/article/details/105052478
如果你是 yolo 小白,或者环境配置等一直报错,请先参阅上一篇博文:keras-yolov3目标检测详解——适合新手 (环境配置、用官方权重识别自己的图片)
本文目的:
前面有篇文章说的是利用官方的权重直接识别自己的图片,我也展示了识别的效果。
今天我介绍一下如何创建自己的数据集去训练属于自己的 model
前提准备:
1、配置好环境的 python、anaconda 或 pycharm
2、labelimg 软件:下载方法: labelimg的下载与使用
3、准备一些图片,创建训练需要的 VOC 文件
(1) 官方的VOC2007下载链接:voc2007下载链接,可以从这里找需要的图片,或者一些有基础的朋友可以写爬虫去爬一些图片
(2) voc2007百度网盘下载链接:
链接:https://pan.baidu.com/s/18wqRTZDSz5NQEtvq0u0a1g
提取码:hexy
(3) 可以自己准备图片,不过最好准备多一点
.
.
正式训练步骤:
一、准备自己的voc2007数据集
先用 pycharm 或 spyder 打开 keras-yolo3 文件夹,用 pycharm 或 spyder 是为了看文件夹更方便,直接在 anaconda 里运行也是可以的
1、打开文件夹
先按照这篇文章的步骤操作:keras-yolov3目标检测详解——适合新手
完成后打开的文件夹应该是这样的:
如果你是 yolo 小白,或者环境配置等一直报错,请先参阅上一篇博文:keras-yolov3目标检测详解——适合新手 (环境配置、用官方权重识别自己的图片)
本文目的:
前面有篇文章说的是利用官方的权重直接识别自己的图片,我也展示了识别的效果。
今天我介绍一下如何创建自己的数据集去训练属于自己的 model
前提准备:
1、配置好环境的 python、anaconda 或 pycharm
2、labelimg 软件:下载方法: labelimg的下载与使用
3、准备一些图片,创建训练需要的 VOC 文件
(1) 官方的VOC2007下载链接:voc2007下载链接,可以从这里找需要的图片,或者一些有基础的朋友可以写爬虫去爬一些图片
(2) voc2007百度网盘下载链接:
链接:https://pan.baidu.com/s/18wqRTZDSz5NQEtvq0u0a1g
提取码:hexy
(3) 可以自己准备图片,不过最好准备多一点
.
2、新建voc2007数据集(存放自己的图片及标注信息)
新建的文件夹:如下
ImageSets 文件夹下还有个名为 Main 的小文件夹
VOCdevkit{
VOC2007{ Annotations
ImageSets{main}
JPEGImages }
}
虽然表达的很丑,但是上面有图,应该还是可以看明白的
注意:文件夹的名称必须和上面展示的一样,这是 yolo 默认的
不然还需要改代码才行
3、用labelimg软件对自己的图片进行信息标注
----labelimg 的使用方法:labelimg 下载和标注 xlm 文件
想要训练自己的模型就要学会 labelimg 的使用,实在不想学的…就评论一下邮箱,我直接把我标注好的 VOC2007 文件夹打包发给你们吧
(1)需要训练的图片放在 JPEGImages 里面: