win10+yolov3+python训练自己的模型

本文详细介绍了在Win10系统中使用Tensorflow2.2.0+CPU配置训练Yolov3模型的过程,包括环境配置、解决Tensorflow版本问题、使用trainyolo.py进行训练,以及数据集的准备和标注。文章提供了解决训练过程中遇到的错误方法,并分享了作者的训练成果和经验。
摘要由CSDN通过智能技术生成

环境调试心得:我的是tensorflow2.2.0+cpu+python
在调试时可能会遇到很多报错,不过几乎都跟tensorflow版本有关,几乎都可以通过tf.compat.v1.来转换版本解决。

trainyolo.py是调好的可训练;train.py是yolo3训练源码,两者代码一样,只是把报错的代码加了compat.v1.
1.用pycharm打开工程时应直接打开最终工程文件夹,不能直接打开初始父文件夹
2.大概有五六处报错,几乎都是tensorflow版本或者keras版本问题
都通过修改tf.compat.v1.改通过
如把:
sess = tf.keras.backend.get_session()
改为如下即可:
sess=tf.compat.v1.keras.backend.get_session()

原文链接:https://blog.csdn.net/qq_45504119/article/details/105052478

如果你是 yolo 小白,或者环境配置等一直报错,请先参阅上一篇博文:keras-yolov3目标检测详解——适合新手 (环境配置、用官方权重识别自己的图片)

本文目的:
前面有篇文章说的是利用官方的权重直接识别自己的图片,我也展示了识别的效果。

今天我介绍一下如何创建自己的数据集去训练属于自己的 model

前提准备:
1、配置好环境的 python、anaconda 或 pycharm

2、labelimg 软件:下载方法: labelimg的下载与使用

3、准备一些图片,创建训练需要的 VOC 文件

(1) 官方的VOC2007下载链接:voc2007下载链接,可以从这里找需要的图片,或者一些有基础的朋友可以写爬虫去爬一些图片

(2) voc2007百度网盘下载链接:

链接:https://pan.baidu.com/s/18wqRTZDSz5NQEtvq0u0a1g
提取码:hexy
(3) 可以自己准备图片,不过最好准备多一点
.
.

正式训练步骤:
一、准备自己的voc2007数据集

先用 pycharm 或 spyder 打开 keras-yolo3 文件夹,用 pycharm 或 spyder 是为了看文件夹更方便,直接在 anaconda 里运行也是可以的

1、打开文件夹

先按照这篇文章的步骤操作:keras-yolov3目标检测详解——适合新手

完成后打开的文件夹应该是这样的:
如果你是 yolo 小白,或者环境配置等一直报错,请先参阅上一篇博文:keras-yolov3目标检测详解——适合新手 (环境配置、用官方权重识别自己的图片)

本文目的:
前面有篇文章说的是利用官方的权重直接识别自己的图片,我也展示了识别的效果。

今天我介绍一下如何创建自己的数据集去训练属于自己的 model

前提准备:
1、配置好环境的 python、anaconda 或 pycharm

2、labelimg 软件:下载方法: labelimg的下载与使用

3、准备一些图片,创建训练需要的 VOC 文件

(1) 官方的VOC2007下载链接:voc2007下载链接,可以从这里找需要的图片,或者一些有基础的朋友可以写爬虫去爬一些图片

(2) voc2007百度网盘下载链接:

链接:https://pan.baidu.com/s/18wqRTZDSz5NQEtvq0u0a1g
提取码:hexy
(3) 可以自己准备图片,不过最好准备多一点
.
在这里插入图片描述
2、新建voc2007数据集(存放自己的图片及标注信息)

新建的文件夹:如下
在这里插入图片描述
ImageSets 文件夹下还有个名为 Main 的小文件夹
在这里插入图片描述
VOCdevkit{
VOC2007{ Annotations
ImageSets{main}
JPEGImages }
}
虽然表达的很丑,但是上面有图,应该还是可以看明白的
注意:文件夹的名称必须和上面展示的一样,这是 yolo 默认的
不然还需要改代码才行

3、用labelimg软件对自己的图片进行信息标注

----labelimg 的使用方法:labelimg 下载和标注 xlm 文件

想要训练自己的模型就要学会 labelimg 的使用,实在不想学的…就评论一下邮箱,我直接把我标注好的 VOC2007 文件夹打包发给你们吧

(1)需要训练的图片放在 JPEGImages 里面:
在这里插入图片描述
在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值