在复杂网络领域,如何识别影响节点是分析网络结构的一个重要问题。在这里介绍一个简单的概念--中心度量
中心度量
考虑有n=|V|节点和m=|E|链接的图G=(V, E)。DC、CC、BC的节点中心性测量定义如下:
A.Degree centrality(DC)
节点i的DC,记为CD(i),定义为
其中i为焦点节点,j为所有其他节点,N为节点总数,为节点i与节点j之间的连接,当节点i与节点j连接时,的值定义为1,否则为0。
B.Betweenness centrality(BC)
节点i的BC,记为CB(i),定义为
其中gjk表示节点j到k之间的最短路径数,and gjk(i)表示节点j到k之间经过节点i的最短路径数。
C.Closeness centrality(CC)
节点i的CC,记为CC(i),定义为
其中dij为节点i到节点j的距离
D.Eigenvector centrality
假设A是n*n相似矩阵。节点i的特征向量中心性xi定义为:归一化特征向量中属于A最大特征值的第i项,k为A最大特征值,n为顶点数
比例系数u,使xi与与其相连的所有节点的相似度评分之和成正比
E.PageRank
PageRank算法是一个著名的特征向量中心性的变种,用于在谷歌搜索引擎和其他商业场景中对网站进行排名。
与特征向量中心性相似,PageRank假设一个网页的重要性由链接到它的网页的数量和质量决定。
最初,每个节点有一个单位PR值。然后,每个节点将PR值均匀地分配给其出站链路上的邻居。数学上,节点vi在t步的PR值为
其中,n为网络中节点总数,k(out) j为节点vj的出度。当所有节点的PR值达到稳态时,上述迭代将停止
F.LeadRank
Leader Rank是是Page Rank算法的一个变种。一般来说,他们引入的是一个与所有其他节点双向连接的接地节点。然后,利用随机游动过程来寻找有影响的节点,这个过程一直持续到稳定状态。这个过程可以用随机矩阵P来描述,概率为pij=aij / k(out) i,节点i的随机漫步者下次到达j,其中aij=1表示节点i指向节点j, k(out) i表示出度。那么节点i在t时刻的得分可以定义为
所有节点i的初始得分为1,地面节点为0。当所有i的分数si(t)收敛到一个唯一的稳态时,表示为si(tc),即收敛时间。因此,节点的最终得分定义为
其中sg(tc)为接地节点稳态得分。因此,我们可以用Si对每个节点进行排序。