SDR及其在波束成形中的应用

一、 半定松弛 Semidefinite relaxation (SDR)

1.齐次QCQP

       SDR可以用于解决很多非凸的二次约束二次规划问题,因此成为信号处理领域一个有力的工具。一般的实值齐次QCQP问题可以表示为如下的形式:

其中X是一个秩为1的半正定矩阵,因此该问题转化为如下的形式: 

优化变量从原来的x变成了X,目标函数和约束条件对于X都是线性的,因此是convex,除了秩为1的约束。为了解决问题,我们先放过最后一个约束条件,即relaxation,这也就是我所理解其称为SDR的原因。至此就得到了一个标准的SDP问题,而以上的凸问题就可以借助CVX进行求解,大部分工具箱使用的都是内点法。

       虽然通过以上的方式,我们可以得到一个X^{*},但是我们无法保证由此得到的x\tilde{}是可行的,因为我们在求解过程中放掉了秩为1的约束。如果X^{*}的秩恰好为1,那么问题解决。在秩不为1的情况下,通常有以下的解决方法:

(1)对X^{*}做特征值分解,选取最大特征值及其对应的特征向量

 以上的直接近似适用于x无约束的情况。例如实际问题中,如果x具有恒模约束就需要将x\tilde{}映射到可行解。

(2) 使用高斯随机化过程得到高质量的秩1解(这里还没研究明白)

缺点:虽然我们通过一系列的方法最终得到了可行解,但是中间的处理过程必然会造成性能的损失,因此也就必然无法取得optimal。当然,这是理所应当的,否则我们就在多项式时间内解决了一个NP-hard问题。

2.更一般的形式:非齐次QCQP问题

对于以上的非齐次形式,我们可以通过引入辅助变量t将其转化为齐次形式后进行求解。


二、应用举例:IRS passive beamforming

 对于一个IRS辅助的MIMO单用户系统,优化问题常表示为如下形式(IRS具有恒模约束):

 利用F范数的定义,可以转化为以下向量乘积的等价形式

 进一步转化为以下的QCQP问题:

关于这里的恒模约束,可以采用取相位的方式解决。


三、总结

本文只对SDR进行了一个简单的介绍,目前我接触到的场景主要在于IRS的设计和发端的波束成形。但实际上如果可以把一个问题转化为QCQP形式,那么理论上都可以借助SDR进行求解。本文只是一个粗浅的认识,后续仍有很多内容需要补充:SDR的拉格朗日解释、高斯随机化过程的应用、计算复杂度和性能分析。

第一次写文,继续加油吧。

参考文献:

[1] LUO Z Q, MA W K, SO A M C, et al. Semidefinite relaxation of quadratic optimization problems[J]. IEEE Signal Processing Magazine, 2010, 27(3):20-34.

 [2] arXiv:2106.00890v1 [eess.SP] 2 Jun 2021

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值