跟李沐学AI:多层感知机

感知机

最早的人工智能模型。

给定输入x(向量),权重w(向量),和偏移b(标量),感知机输出:w、x做内积加上偏移b后代入sigma函数。感知机用于处理二分类问题。

感知机与线性回归输出的区别:

感知机输出的是离散的类,线性回归输出的是一个实数。

感知机与softmax回归输出的区别:

softmax可以进行多分类问题,感知机只能处理二分类问题。

感知机的缺点

感知机不能拟合Xor函数,它只能产生线性分割面。

感知机总结

感知机是一个二分类模型,是最早的AI模型之一

它的求解算法等价于使用批量大小为1的梯度下降

它不能拟合Xor函数,导致第一次AI寒冬

多层感知机

隐藏层

线性模型的局限性:

线性模型基于单调性假设,即特征与预测输出之间存在直接的正比反比关系。但生活中不一定所有现线均遵循单调规律。

线性模型忽略了特征间的相互作用和上下文效应,导致模型处理高维且结构化的数据时失效。

使用隐藏层克服线性模型的局限性:

隐藏层(Hidden Layer)是神经网络中位于输入层与输出层之间的层。多层感知机可能包含一个或多个隐藏层。每个额外的隐藏层都能够学习更为复杂的特征交互,从而增强模型对复杂数据分布的学习能力。

我们可以在网络中加入一个或多个隐藏层以克服线性模型的局限性。最简单的方法是将许多全连接层堆叠,如下图所示:

多层感知机(Multilayer Perceptron, MLP)是输入层与输出层间具有一个或多个隐藏层的神经网络。MLP中的每层神经元都与下一层的所有神经元全连接,故MLP中的所有隐藏层都是全连接层,每层的每个节点都受到上一层所有节点的影响。MLP的输出层仅负责接收原始数据,不涉及任何计算,输出层基于隐藏层的输出给出最终的预测或分类结果。

多层感知机的输入为矩阵X\epsilon R^{n\times d},表示样本数量为n,每个样本具有d个特征的小批量。

隐藏层权重矩阵W_1的维度由输入特征向量的特征数和隐藏层的隐藏单元个数共同决定。输入特征向量有n个特征,隐藏层中有d个隐藏单元,则隐藏层权重矩阵的维度为d x h,即W_1\epsilon R^{d\times h},偏置量b1则有b_1\varepsilon R^{1\times h}.

隐藏层输出H=XW_1+b_1H\epsilon R^{n\times h}H为n x h 的矩阵。

因为隐藏层与输出层全连接,输出层权重矩阵由隐藏层的隐藏单元个数h和输出类别数q共同决定。输出层权重矩阵W_2\epsilon E^{h\times q},偏置量b_2\epsilon R^{1\times q}。则感知机的输出O为O=HW_2+b_2,O为n x q的矩阵。O\varepsilon R^{n\times q}

为了使神经网络表达非线性函数,需要进入激活函数\sigma。激活函数的输出被称为活性值。通过非线性变换使得神经网络能够拟合非线性函数。有了激活函数,就不可能再将我们的多层感知机退化成线性模型。故隐藏层的输出变为:H=\sigma(XW_1+b_1),输出层输出仍为:O=HW_2+b_2

为了构建更通用的多层感知机,可以继续增加隐藏层从而产生更有表达能力的模型。

多隐藏层的计算表示如下:

多层感知机中,超参数为隐藏层的层数每层隐藏层的大小 。

有多个隐藏层的多层感知机,每层隐藏层的大小应该逐步减少。

激活函数

几个经典的激活函数:

1. Sigmoid激活函数

sigmoid通常称为挤压函数(squashing function),它的作用是:在(-inf, inf)范围内任意输入压缩到区间(0, 1的 某个值:

sigmoid函数图像如下图所示:

 2. Tanh激活函数

与sigmoid函数类似, tanh(双曲正切)函数也能将其输入压缩转换到区间(-1, 1)上。 tanh函数的公式如下:

 当输入在0附近时,tanh函数接近线性变换。 函数的形状类似于sigmoid函数, 不同的是tanh函数关于坐标系原点中心对称。

3. ReLu激活函数 

最受欢迎的激活函数。定元素𝑥,ReLU函数被定义为该元素与0的最大值,公式如下:

通俗地说,ReLU函数通过将相应的活性值设为0,仅保留正元素并丢弃所有负元素。  

当输入值精确等于0时,ReLU函数不可导。 在此时,我们默认使用左侧的导数,即当输入为0时导数为0。 

多层感知机总结

  • 多层感知机在输出层和输入层之间增加一个或多个全连接隐藏层,并通过激活函数转换隐藏层的输出。

  • 常用的激活函数包括ReLU函数、sigmoid函数和tanh函数。

  • 使用Softmax来处理多类分类

  • 超参数为隐藏层数和各个隐藏层大小

  • 30
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值