跟李沐学AI:丢弃法

概述

一个好的模型,应该有较好的平滑性,即函数不应该对其输入的微小变化敏感。如对图像进行分类时,向图像像素中添加一些随机的噪声应对分类结果基本没有影响。

丢弃法在前向传播的过程中,计算内部每层权重的同时注入噪声。因为当训练一个有多层的深层网络时,注入噪声只会在输入-输出映射上增强平滑性。丢弃法已经成为训练神经网络的常用技术。 

这种方法之所以被称为丢弃法,因为从表面上,训练过程中一些神经元被丢弃了(置为0)。

如何无偏差地加入噪音

对x加入噪音得到x',我们希望E[x'] = x,即加入噪音后,扰动点地均值仍为x。标准丢弃法对每个点进行如下扰动:

即一定概率将该点的值置为0,否则该点的值为xi/1-p。这样E[x_i'] = p *0+(1-p)*\frac{x_i}{(1-p)}=x_i 

使用丢弃法

通常将丢弃法作用在隐藏全连接层的输出上。以𝑝的概率将隐藏单元置为零时, 结果可以看作一个只包含原始神经元子集的网络。

如图所示,按照p概率丢弃了隐藏层中的h2和h5单元。 

h为隐藏层激活后的输出。h'为对h进行丢弃法后的结果。o为输出层的输出,y为经过softmax后的分类结果。 

 推理中的丢弃法

dropout作为一种正则项,只在训练中使用用于更新模型参数。在推理(预测)过程中,丢弃法的输出直接返回输入,以保证输出的确定性。

丢弃法总结

丢弃发将一些隐藏层的输出项随机置0来控制模型复杂度

常作用于多层感知机的隐藏层输出

丢弃概率是控制模型复杂度的超参数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值