《李沐:动手学深度学习v2 pytorch版》第4章:4.1-4.3多层感知机

4.1 多层感知机

4.1.1 隐藏层

由于线性模型可能出错,我们可以通过在网络中加入一个或多个隐藏层来克服线性模型的限制, 使其能处理更普遍的函数关系类型。 要做到这一点,最简单的方法是将许多全连接层堆叠在一起。 每一层都输出到上面的层,直到生成最后的输出。 我们可以把前L-1层看作表示,把最后一层看作线性预测器。 这种架构通常称为多层感知机(multilayer perceptron),通常缩写为MLP。 下面,我们以下图的方式描述了多层感知机:

一个单隐藏层的多层感知机,具有5个隐藏单元
这个多层感知机有4个输入,3个输出,其隐藏层包含5个隐藏单元。 输入层不涉及任何计算,因此使用此网络产生输出只需要实现隐藏层和输出层的计算。 因此,这个多层感知机中的层数为2。 注意,这两个层都是全连接的。 每个输入都会影响隐藏层中的每个神经元, 而隐藏层中的每个神经元又会影响输出层中的每个神经元。

隐藏层的大小和层数也属于超参数。

4.1.2 激活函数

激活函数(activation function)通过计算加权和并加上偏置来确定神经元是否应该被激活, 它们将输入信号转换为输出的可微运算。 大多数激活函数都是非线性的。 由于激活函数是深度学习的基础,下面简要介绍一些常见的激活函数。

Relu函数:修正线性单元(Rectified linear unit,ReLU)

最受欢迎的激活函数是修正线性单元(Rectified linear unit,ReLU), 因为它实现简单,同时在各种预测任务中表现良好。 ReLU提供了一种非常简单的非线性变换。 给定元素x,ReLU函数被定义为该元素与0的最大值:
在这里插入图片描述
通俗地说,ReLU函数通过将相应的活性值设为0,仅保留正元素并丢弃所有负元素。

使用ReLU的原因是,它求导表现得特别好:要么让参数消失,要么让参数通过。 这使得优化表现得更好,并且ReLU减轻了困扰以往神经网络的梯度消失问题(稍后将详细介绍)。

注意,ReLU函数有许多变体,包括参数化ReLU(Parameterized ReLU,pReLU),该变体为ReLU添加了一个线性项,因此即使参数是负的,某些信息仍然可以通过:
在这里插入图片描述

sigmoid函数

对于一个定义域在R中的输入, sigmoid函数将输入变换为区间(0, 1)上的输出。 因此,sigmoid通常称为挤压函数(squashing function): 它将范围(-inf, inf)中的任意输入压缩到区间(0, 1)中的某个值:
在这里插入图片描述
在最早的神经网络中,科学家们感兴趣的是对“激发”或“不激发”的生物神经元进行建模。 因此,这一领域的先驱可以一直追溯到人工神经元的发明者麦卡洛克和皮茨,他们专注于阈值单元。 阈值单元在其输入低于某个阈值时取值0,当输入超过阈值时取值1。
当人们逐渐关注到到基于梯度的学习时, sigmoid函数是一个自然的选择,因为它是一个平滑的、可微的阈值单元近似。 当我们想要将输出视作二元分类问题的概率时, sigmoid仍然被广泛用作输出单元上的激活函数 (sigmoid可以视为softmax的特例)。 然而,sigmoid在隐藏层中已经较少使用, 它在大部分时候被更简单、更容易训练的ReLU所取代。 在后面关于循环神经网络的章节中,我们将描述利用sigmoid单元来控制时序信息流的架构。

tanh函数

与sigmoid函数类似, tanh(双曲正切)函数也能将其输入压缩转换到区间(-1, 1)上。 tanh函数的公式如下:
在这里插入图片描述

4.2 多层感知机的从零开始实现

我们已经在 4.1节中描述了多层感知机(MLP), 现在让我们尝试自己实现一个多层感知机。 为了与之前softmax回归( 3.6节 ) 获得的结果进行比较, 我们将继续使用Fashion-MNIST图像分类数据集 ( 3.5节)。

import torch
from torch import nn
from d2l import torch as d2l

batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)

4.2.1 初始化模型参数

回想一下,Fashion-MNIST中的每个图像由28x28=784个灰度像素值组成。 所有图像共分为10个类别。 忽略像素之间的空间结构, 我们可以将每个图像视为具有784个输入特征 和10个类的简单分类数据集。 首先,我们将实现一个具有单隐藏层的多层感知机, 它包含256个隐藏单元。 注意,我们可以将这两个变量都视为超参数。 通常,我们选择2的若干次幂作为层的宽度。 因为内存在硬件中的分配和寻址方式,这么做往往可以在计算上更高效。

我们用几个张量来表示我们的参数。 注意,对于每一层我们都要记录一个权重矩阵和一个偏置向量。 跟以前一样,我们要为损失关于这些参数的梯度分配内存。

num_inputs, num_outputs, num_hiddens = 784, 10, 256

W1 = nn.Parameter(torch.randn(
    num_inputs, num_hiddens, requires_grad=True) * 0.01)
b1 = nn.Parameter(torch.zeros(num_hiddens, requires_grad=True))
W2 = nn.Parameter(torch.randn(
    num_hiddens, num_outputs, requires_grad=True) * 0.01)
b2 = nn.Parameter(torch.zeros(num_outputs, requires_grad=True))

params = [W1, b1, W2, b2]

4.2.2 激活函数

定义Relu函数:

def relu(X):
    a = torch.zeros_like(X)
    return torch.max(X, a)

4.2.3 模型

因为我们忽略了空间结构, 所以我们使用reshape将每个二维图像转换为一个长度为num_inputs的向量。 只需几行代码就可以实现我们的模型。

def net(X):
    X = X.reshape((-1, num_inputs))
    H = relu(X@W1 + b1)  # 这里“@”代表矩阵乘法
    return (H@W2 + b2)

4.2.4 损失函数

由于我们已经从零实现过softmax函数( 3.6节), 因此在这里我们直接使用高级API中的内置函数来计算softmax和交叉熵损失。

loss = nn.CrossEntropyLoss(reduction='none')

4.2.5 训练

幸运的是,多层感知机的训练过程与softmax回归的训练过程完全相同。 可以直接调用d2l包的train_ch3函数(参见 3.6节 ), 将迭代周期数设置为10,并将学习率设置为0.1

num_epochs, lr = 10, 0.1
updater = torch.optim.SGD(params, lr=lr)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, updater)

在这里插入图片描述
为了对学习到的模型进行评估,我们将在一些测试数据上应用这个模型。

d2l.predict_ch3(net, test_iter)

4.3 多层感知机的简介实现

直接调用API:

import torch
from torch import nn
from d2l import torch as d2l

net = nn.Sequential(nn.Flatten(),
                    nn.Linear(784, 256),
                    nn.ReLU(),
                    nn.Linear(256, 10))

def init_weights(m):
    if type(m) == nn.Linear:
        nn.init.normal_(m.weight, std=0.01)

net.apply(init_weights);

batch_size, lr, num_epochs = 256, 0.1, 10
loss = nn.CrossEntropyLoss(reduction='none')
trainer = torch.optim.SGD(net.parameters(), lr=lr)

train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)
  • 9
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值