真的很佩服中国人无孔不入的钻营能力,我看到抖音的点赞功能,它竟然允许同一个client无限地点赞,然后我突然想到应该有人会做这个cheat产品,上淘宝一搜,极快地返回没有商品,很明显反应过度,这种产品被封了。上1688搜,出来很多,第一波做这个应该赚了钱,因为实在简单:直接固定在屏幕上,不断地产生双击就好。最开始的时候抖音肯定不会管甚至会纵容,那实现这种功能就太简单了。后来开始打击,所以很机械的产品不行,开始出现模拟人的操作,也出现点击位置可移动的产品。
其实,有需求就会有产品,出现这个无可厚非。
抖音这个产品需要互动以增加用户粘度,同时为抖音控制用户、获得收入提供手段,点赞这种功能肯定会存在下去,只不过随着本身的发展会一点点地淘汰哪些不合时宜的作弊行为。
我看到这个产品后,想到的发展方向是:提高人类双击行为模拟真实度。应该需要从两个方向进行改善:
1)在屏幕上点击位置的仿真程度提升。这会要求点击触点不会明显地表现出由一个转动臂控制,呈环形分布。
2)人类行为特征模拟提升。人类手指双击时两次落点会出现差异,并且由于指关节的限制,前后两次的偏移会保持某种特性。还有,点击按下的时长、两次点击的时间间隔都会有人类所具有的特性。这就涉及到机器学习范畴了,不过建立相关模型的工作必须在此应用之外完成,这个应用不过是使用之前建立的模型而已。
实现技术基本都成熟:MCU控制,xy导轨,步进电机,电磁阀。只不过要降低成本需要采用最简单的实现方式。
目前使用一个电机驱动机械臂不能完全模拟,至少需要增加一个运动维度形成在平面上某个区域内的自由移动,最简单的应该就是3D打印里那种滚珠丝杠机构,当然精度根本不需要那么高,机械臂及电机固定在丝杆上做上下移动,机械臂完成环形运动,通过一定的算法可实现手指活动范围的模拟。
点击这个动作我猜测是电磁阀的一个简单实现,通电线圈产生磁力推动带橡胶头的铁心移动点击屏幕。
要欺骗app让它根本分辨不出是人类还是机械在操作,就得模拟人的特性,人不可能像机械那么精确、一致,也不可能每次都成功,所以不仅仅要模拟成功的动作还要模拟失败的动作。
有兴趣的一起讨论。
机器学习的算法本来想学学,但是看到那些看不懂的公式就想睡觉,所以书买了半年还停留在当时看的位置,现在已经全忘记了:)
应该使用哪些算法?建立什么模型?
要不要在设备开始使用的时候进行训练以学习操作者的特性?