RDD依赖关系
1. RDD血缘关系
RDD只支持粗粒度转换,即在大量记录上执行的单个操作。将RDD的一系列Lineage(血统)记录下来,以便恢复丢失的分区。RDD的Lineage会记录RDD的元数据信息和转换行为,当该RDD的部分分区数据丢失时,他可以根据这些信息来重新运算
和恢复丢失的数据分区。
2. RDD依赖关系
这里所谓的依赖关系,其实就是两个相邻RDD之间的关系
3. RDD窄依赖
窄依赖表示每一个父RDD的Partition最多被子RDD的一个Partition使用,窄依赖我们形象的比喻为独生子女。
4. RDD宽依赖
宽依赖表示同一个父RDD的Partition被多个子RDD的Partititon依赖,会引起Shuffle。宽依赖形象的比喻为多生。
5. RDD阶段划分
DAG(Directed Acyclic Graph)有向无环图是由点和线组成的拓扑图形,该图形具有方向,不会闭环。
6. RDD任务的划分
RDD任务切分中间分为:Application、Job、Stage和Task
- Application:初始化一个SparkContext即生成一个Application
- Job:一个Action算子生成一个Job
- Stage:以宽依赖(ShuffleDependency)为界,个数等于宽依赖的个数加1
- Task:一个Stage阶段中,最后一个RDD的分区数就是Task的个数
注意:Application->Job->Stage->Task 每一层都是1对n的关系。