基于数学建模的论文问题~
首页:论文题目、摘要、关键字
题目还是正式的好
对于摘要:
1.摘要前言
起到总结概括的作用,包括三个部分:研究问题的背景或意义,主要研究思路与方法,取得的成果或解决的主要问题等。
一般2-3句即可。
2.摘要正文
简述各问题的建模过程及结果分析
针对问题一
针对问题二
针对问题三...
/对每个问题主要包括四个部分:简述问题,建模思路,模型求解和结果分析 /
如下:
简述问题: (1)直接归纳法:如 针对问题一,先分析这个问题失败的原因;针对问题一,主要给出团队的最佳写作策略及对应的颠球高度。
(2)分类法:如 针对问题一,这是一道典型的动态规划问题;针对问题二,可以将其定性为评价类问题。
建模思路:没固定模式,主要是包括对问题的分析或数据的获取与处理,采用了什么数学方法进行分析,建立了什么样的数学模型等等。
模型求解:采用了基于XXX数据,采用了什么方法/软件/平台等对模型进行求解
结果分析:利用模型计算结果 回答题目问题
其中根据问题的不同还分为计算型问题和开放性问题。计算型问题需要对某个参数进行准确的计算,一般适用于物理数学类赛题。结果的正确性直接影响论文的质量,在作答时需给出题目要求我们计算的所有量,注意字体加深并注明单位。开放型问题要给出影响,后果,策略,评价等类型的赛题,这类问题再进行结果分析时应该尽可能的将关键性的结果或结论进行简述,最好有数值支撑,实在无法简述就阐明该问题得到了解决。
(优化问题三要素:目标函数,决策变量,约束条件)
3.摘要结尾
该部分对整个建模过程的总结和升华,常见的是进行优缺点评价,模型的创新性评价,模型的推广等等
接下来分析一篇2010 世博会对上海旅游业的影响研究的摘要:
2010 世博会对上海旅游业的影响研究
摘要
*(前言)*2010 年上海世博会是上海经济发展的又一个历史机遇,对于加速推进上海国际化大都市的建设和建设国际经济、金融、贸易、航运中心具有积极作用。世博会是通过世博经济对举办国家和城市产生影响,因此定量评估世博会对上海经济的影响力,可以使人们更好的了解世博会,参与世博会,具有重要意义。(研究背景及意义)
(简述问题)本文主要通过定量研究世博会对上海旅游经济的影响力,从这一侧面反映世博会对上海经济的影响,为此我们建立了两个数学模型,即 T-BTL(旅游本底趋势线)模型和 FA-MR(因子分析与多元回归混合)模型。
(建模思路)在 T-BTL 模型中,我们选取了旅游业的 7 个主要经济衡量指标,并且搜集了大量的 数据,通过建立旅游业各项指标的本底趋势线方程,定量描述了上海旅游业在没有重大 事件发生时的自然发展趋势。(模型求解)在忽略其他外在因素影响力的前提下,通过计算模拟定量 给出了 2010 年上海旅游业各项指标,即各指标的本底值;通过分析前九个月上海旅游业形势及网上的评估,计算出 2010 年上海旅游业各项指标的实际值,通过对实际值和本底值的比较分析,多方位的定量评估了世博会对上海旅游业发展的影响力。(结果分析)结果表明: 世博会对 7 个指标的数值影响值大小,影响率和贡献率数值都较为明显,在世博会的影响下,上海旅游业 7 项指标数值相较于本底值都有大幅度的增长,所以说明上海世博会对 2010 年上海旅游业的发展起到了极大的推进作用。
*(建模思路和模型求解) 在 FA_MR 模型中,先对所选取的指标因子分析合理性进行验证,利用因子分析将众多错综复杂的变量按照相关性进行分组,使同组内的变量相关性高,而每组之间的相关性较低的特性,对所有指标进行分组,每组变量代表一个基本结构,这些基本结构代表了旅游业发展的一个侧面,(结果分析)*本文中定义为国内助长因子与国外主张因子,通过对主因子进行回归分析比较,从一个侧面反映了世博会对旅游业的影响,同时印证了第一个模型结果的合理性。
*(摘要结尾)*两个不同的模型从不同的侧面进行计算机模拟,得到了类似的结果,即世博会对上
海市旅游业产生了较大的影响,彼此的结果又相互得到了印证,说明了模型的合理性。
*关键词:*旅游本底趋势线
因子分析
曲线回归模型
KMO 检验
关键词一般放4-6个,可以放论文中使用的主要模型,也可以放论文中出现次数较多,能体现论文主要内容的词。
正文
问题重述->问题分析->模型假设->符号说明->模型建立与求解
1)问题重述
首先要简单地说明问题的情景,列出必要数据,提出要解决的问题并给出研究对象的关键信息的内容 (千万不能照抄原题!!会有查重扣分!!)
这个部分一般包括两个部分:背景描述和问题阐述
数值计算求解就直接将赛题背景简述之后用自己的语言将问题照搬,开放类赛题若赛题描述简单需要扩充,繁琐则简化,用自己语言提炼关键问题。
第一部分背景描述:1.背景描述过于繁琐,则简化的问题重述不超过一页。2.背景描述过于简单,适当扩充。3.背景描述适中,以改写为主。
第二部分研究问题描述: 对于问题而言一般分成两类,数值分析类和开放性问题。
对于数值分析类:往往需要基于某些固有参数或在限定的条件下进行计算,此时需要将关键参数或问题进行描述,对于其他背景内容可不写。
对于开放性问题: 简单则扩充,繁琐则简化。
2)问题分析
问题分析是将具体问题抽象成数学模型的桥梁,反映了对问题的认识程度,体现了解决问题的雏形,也就是给出建模的思路,起到承上启下的作用,反应建模者的综合水平。
问题分析应包括的内容:
1.题目中包括的已知条件,参数或数据等;
2.对问题进行宏观分析,确定要解决问题的关键;
3.对该问题给出大致的求解思路(如可建立XXX模型,可采用XXX方法等)
4.给出该问题已得到求解的相关描述(非具体结论)
'''在撰写时应尽量将每一小问单独设置一段 ,
不要与摘要中对每一问的分析相同,
在问题分析中不需要撰写结论或具体的求解结果等,
对于需要采用很多步骤的求解思路可结合流程图描述'''
此外,
问题分析一般有2种放置形式。第一种直接放置在问题重述后,第二种放置在每一小问的模型建立与求解中。
-------------------------------------------------------------------------------------------------------------------------------------------------
持续更新中.......