栈的介绍
·栈是一个先入后出的有序序列
·栈是 限制线性表中元素的插入和删除只能在线性表的一端进行的 一种特殊线性表
·根据栈的定义可知,最先放进栈中的元素在栈底,最后放入的元素在栈顶,而删除元素刚好相反,最后放入的元素最先删除,最先放入的元素最后删除
栈的应用场景
·子程序的调用:在跳往程序前,会先将下个指令的地址存到堆栈中,直到子程序执行完后再将地址取出,以回到原来的程序中。
·处理递归调用:和子程序的调用类似,只是除了储存下一个指令的地址外,也将参数,区域变量等数据存入堆栈中
·表达式的转换[中缀表达式转后缀表达式]与求值(实际解决)
·二叉树的遍历
·图形的深度优先搜索法
实现栈
思路分析
·利用数组模拟栈
·因为栈在操作时栈底固定,栈顶变化,所以我们定义一个top来表示栈顶,初始化可以为-1
·入栈操作,栈底不动,有数据data加入栈时,栈顶移动,数据传入栈中,即
top++;stack[top]=data;
·出栈操作,栈底不动,有数据data出栈时,数据出栈,栈顶下移,定义一个辅助变量value来接受数据即:
value=stack[top]; top–; return value;
代码实现
package Stack;
import java.util.Scanner;
public class ArrayStackDemo {
public static void main(String[] args) {
ArrayStack stack=new ArrayStack(4);
String key="";
boolean loop=true;
Scanner scanner =new Scanner(System.in);
while(loop){
System.out.println("show:显示栈");
System.out.println("exit:退出程序");
System.out.println("push:添加数据到栈");
System.out.println("pop:从栈取出数据");
System.out.println("请输入即将进行的操作");
key=scanner.next();
switch (key){
case"show":
stack.list();
break;
case"push":
System.out.println("请输入添加数据");
int value =scanner.nextInt();
stack.push(value);
break;
case"pop":
try {
int res=stack.pop();
System.out.printf("出栈的数据为%d\n",res);
}catch (Exception e){
System.out.println(e.getMessage());
}
break;
case "exit":
scanner.close();
loop=false;
break;
default:
break;
}
}
System.out.println("程序已退出");
}
}
class ArrayStack{
private int maxSize;
private int[] stack;
private int top=-1;
public ArrayStack(int maxSize){
this.maxSize=maxSize;
stack=new int[this.maxSize];
}
//判断栈满
public boolean isFull(){
return top==maxSize-1;
}
//判断栈空
public boolean isEmpty(){
return top==-1;
}
//入栈
public void push(int value){
//判断栈是否满
if (isFull()){
System.out.println("栈已满,无法加入");
return;
}
top++;
stack[top]=value;
}
//出栈
public int pop (){
if (isEmpty()){
throw new RuntimeException("栈内为空,无数据出栈");
}
int value=stack[top];
top--;
return value;
}
//展示栈内数据
public void list(){
if (isEmpty()){
System.out.println("栈内为空,无数据");
return;
}
for (int i=top;i>=0;i--){
System.out.printf("stack[%d]=%d\n",i,stack[i]);
}
}
}