[数据结构学习日记]PTA-树1 树的同构

给定两棵树T1和T2。如果T1可以通过若干次左右孩子互换就变成T2,则我们称两棵树是“同构”的。例如图1给出的两棵树就是同构的,因为我们把其中一棵树的结点A、B、G的左右孩子互换后,就得到另外一棵树。而图2就不是同构的。

图1

图2 

现给定两棵树,请你判断它们是否是同构的。

输入格式:

输入给出2棵二叉树树的信息。对于每棵树,首先在一行中给出一个非负整数N (≤10),即该树的结点数(此时假设结点从0到N−1编号);随后N行,第i行对应编号第i个结点,给出该结点中存储的1个英文大写字母、其左孩子结点的编号、右孩子结点的编号。如果孩子结点为空,则在相应位置上给出“-”。给出的数据间用一个空格分隔。注意:题目保证每个结点中存储的字母是不同的。

输出格式:

如果两棵树是同构的,输出“Yes”,否则输出“No”。

输入样例1(对应图1):

8
A 1 2
B 3 4
C 5 -
D - -
E 6 -
G 7 -
F - -
H - -
8
G - 4
B 7 6
F - -
A 5 1
H - -
C 0 -
D - -
E 2 -

输出样例1:

Yes

输入样例2(对应图2):

8
B 5 7
F - -
A 0 3
C 6 -
H - -
D - -
G 4 -
E 1 -
8
D 6 -
B 5 -
E - -
H - -
C 0 2
G - 3
F - -
A 1 4

输出样例2:

No
#include <iostream>
using namespace std;
using Tree_ = class TreeNode;
using Tree = Tree_*;
class TreeNode {
public:
	char Data{ '0' };
	int Left{ '0' };
	int Right{ '0' };
	int Test{0};
};
int CreateTree(Tree& T, int N) {
	for (int i = 0; i < N; i++) {
		char left, right;
		cin >> T[i].Data >> left >> right;
		if (left != '-') {
			T[i].Left = (left - '0');
			T[T[i].Left].Test = 1;
		}
		else {
			T[i].Left = -1;
		}
		if (right != '-') {
			T[i].Right = (right - '0');
			T[T[i].Right].Test = 1;
		}
		else {
			T[i].Right = -1;
		}
	}
	for (int i = 0; i < N; i++) {
		if (T[i].Test == 0) {
			return i;
		}
	}
};
bool Isomorphism(Tree T1, int t1, Tree T2, int t2) {
	if (T1[t1].Left == -1 && T1[t1].Right == -1 && T2[t2].Left == -1 && T2[t2].Right == -1) {
		return T1[t1].Data == T2[t2].Data;
	}//两棵树都没有子树的情况;
	else if (T1[t1].Left == -1 && T1[t1].Right == -1 && (T2[t2].Left != -1 || T2[t2].Right != -1)) {
		return false;
	}//树1空,树2不空的情况;
	else if (T2[t2].Left == -1 && T2[t2].Right == -1 && (T1[t1].Left != -1 || T1[t1].Right != -1)) {
		return false;
	}//树2空,树1不空的情况;
	else if (T1[t1].Left == -1 && T2[t2].Left == -1) {
		return Isomorphism(T1, T1[t1].Right, T2, T2[t2].Right);
	}//树1和树2的左子树为空的情况下,判断右子树;
	else if (T1[t1].Right == -1 && T2[t2].Right == -1) {
		return Isomorphism(T1, T1[t1].Left, T2, T2[t2].Left);
	}//树1和树2的右子树为空的情况下,判断左子树;
	else if (T1[t1].Left == -1 && T2[t2].Right == -1) {
		return Isomorphism(T1, T1[t1].Right, T2, T2[t2].Left);
	}//树1左子树空,树2右子树空, 判断树1的右子树和树2的左子树;
	else if (T2[t2].Left == -1 && T1[t1].Right == -1) {
		return Isomorphism(T2, T2[t2].Right, T1, T1[t1].Left);
	}//树2左子树空,树1右子树空, 判断树2的右子树和树1的左子树;
	else {
		return (Isomorphism(T1, T1[t1].Left, T2, T2[t2].Left) && Isomorphism(T1, T1[t1].Right, T2, T2[t2].Right))
				|| (Isomorphism(T1, T1[t1].Left, T2, T2[t2].Right) && Isomorphism(T1, T1[t1].Right, T2, T2[t2].Left));
	}//判断树1左子树和树2左子树同构 并且 判断树1右子树和树2右子树同构 的情况 
	 //或者树1左子树和树2右子树同构 并且 判断树1右子树和树2左子树同构 的情况
     //两种情况满足一种即可判定为同构。
};
int main() {
	int N1,N2;
	int root1{0}, root2{0};
	Tree T1 = nullptr;
	Tree T2 = nullptr;
	cin >> N1;
	if (N1 != 0) {
		T1 = new Tree_[N1];
		root1 = CreateTree(T1, N1);
	}
	cin >> N2;
	if (N2 != 0) {
		T2 = new Tree_[N2];
		root2 = CreateTree(T2, N2);
	}
	if (N1 == 0 && N2 == 0) {
		cout << "Yes" << endl;
	}//两棵空树;
	else if (N1 != N2) {
		cout << "No" << endl;
	}//其中一个树为空,另一个非空;
	else if (Isomorphism(T1, root1, T2, root2) == true) {
		cout << "Yes" << endl;
	}
	else {
		cout << "No" << endl;
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值