746. 使用最小花费爬楼梯
数组的每个下标作为一个阶梯,第 i 个阶梯对应着一个非负数的体力花费值 cost[i](下标从 0 开始)。
每当你爬上一个阶梯你都要花费对应的体力值,一旦支付了相应的体力值,你就可以选择向上爬一个阶梯或者爬两个阶梯。
请你找出达到楼层顶部的最低花费。在开始时,你可以选择从下标为 0 或 1 的元素作为初始阶梯。
示例 1:
输入:cost = [10, 15, 20]
输出:15
解释:最低花费是从 cost[1] 开始,然后走两步即可到阶梯顶,一共花费 15 。
示例 2:
输入:cost = [1, 100, 1, 1, 1, 100, 1, 1, 100, 1]
输出:6
解释:最低花费方式是从 cost[0] 开始,逐个经过那些 1 ,跳过 cost[3] ,一共花费 6 。
提示:
cost 的长度范围是 [2, 1000]。
cost[i] 将会是一个整型数据,范围为 [0, 999] 。
动态规划四部曲
- 确定dp数组和下标的含义: dp[i]表示到i层花费的最少体力
- 确定转移方程:dp[i] = cost[i] + min(dp[i-1],dp[i-2])
- 确定初始状态:dp[0] = cost[0],dp[1] = cost1;
- 确定遍历顺序:从前往后
class Solution {
public:
int minCostClimbingStairs(vector<int>& cost) {
int n = cost.size();
vector<int> dp(n);
dp[0] = cost[0];
dp[1] = cost[1];
for(int i = 2; i < n; i++)
{
dp[i] = min(dp[i - 1], dp[i - 2]) + cost[i];
}
return dp[n-1] < dp[n - 2] ? dp[n -1]: dp[n-2];
}
};
优化空间
class Solution {
public:
int minCostClimbingStairs(vector<int>& cost) {
int n = cost.size();
int dp[3];
dp[0] = cost[0];
dp[1] = cost[1];
for(int i = 2; i < n; i++)
{
dp[2] = min(dp[0], dp[1]) + cost[i];
dp[0] = dp[1];
dp[1] = dp[2];
}
return min(dp[1], dp[0]);
}
};