使用最小花费爬楼梯

746. 使用最小花费爬楼梯

数组的每个下标作为一个阶梯,第 i 个阶梯对应着一个非负数的体力花费值 cost[i](下标从 0 开始)。

每当你爬上一个阶梯你都要花费对应的体力值,一旦支付了相应的体力值,你就可以选择向上爬一个阶梯或者爬两个阶梯。

请你找出达到楼层顶部的最低花费。在开始时,你可以选择从下标为 0 或 1 的元素作为初始阶梯。
示例 1:

输入:cost = [10, 15, 20]
输出:15
解释:最低花费是从 cost[1] 开始,然后走两步即可到阶梯顶,一共花费 15 。
示例 2:
输入:cost = [1, 100, 1, 1, 1, 100, 1, 1, 100, 1]
输出:6
解释:最低花费方式是从 cost[0] 开始,逐个经过那些 1 ,跳过 cost[3] ,一共花费 6 。

提示:
cost 的长度范围是 [2, 1000]。
cost[i] 将会是一个整型数据,范围为 [0, 999] 。

动态规划四部曲

  • 确定dp数组和下标的含义: dp[i]表示到i层花费的最少体力
  • 确定转移方程:dp[i] = cost[i] + min(dp[i-1],dp[i-2])
  • 确定初始状态:dp[0] = cost[0],dp[1] = cost1;
  • 确定遍历顺序:从前往后
class Solution {
public:
    int minCostClimbingStairs(vector<int>& cost) {
        int n = cost.size();
        vector<int> dp(n);
        dp[0] = cost[0];
        dp[1] = cost[1];
        for(int i = 2; i < n; i++)
        {
            dp[i] = min(dp[i - 1], dp[i - 2]) + cost[i];
        }
        return dp[n-1] < dp[n - 2] ? dp[n -1]: dp[n-2];
    }
};

优化空间

class Solution {
public:
    int minCostClimbingStairs(vector<int>& cost) {
    	int n = cost.size();
  		int dp[3];
        dp[0] = cost[0];
        dp[1] = cost[1];
        for(int i = 2; i < n; i++)
        {
            dp[2] = min(dp[0], dp[1]) + cost[i];
            dp[0] = dp[1];
            dp[1] = dp[2];  
        }
        return min(dp[1], dp[0]);
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值