初级数据结构 — 二叉树 | 堆

1.什么是二叉树 | 堆

          是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因 为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。
        所谓 二叉树 ,就是其所有的根的分支(度), 都没有大于2的
        所以二叉树的分支范围就是 0 ~ 2。

 

属性结构
树形结构

二叉树
二叉树

2.堆的实现

2.1 Heap.h

#define _CRT_SECURE_NO_WARNINGS 1
#pragma once
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<stdbool.h>
#include<assert.h>



typedef int HPDatatype;

typedef struct Heap
{
	HPDatatype* a;
	int size;
	int capacity;
}HP;

void HeapPrint(HP* php);//堆的数据打印
void HeapInit(HP* php);//堆的初始化
void HeapDestory(HP* php);//堆销毁
void HeapPop(HP* php);//删除堆顶元素
void HeapPush(HP* php,HPDatatype x);//堆尾插入元素
HPDatatype HeapTop(HP* php);//获取堆顶元素
bool HeapEmpty(HP* php);//判断堆是否为空
int HeapSize(HP* php);//获取堆的数据量
void Swap(int* a, int* b);//调换堆中数据

void AdjustUp_sHeap(HPDatatype* a, int child);//小堆向上调整
void AdjustDown_sHeap(HPDatatype* a, int size, int parent);//小堆向下调整

void AdjustUp_bigHeap(HPDatatype* a, int child);//大堆向上调整
void AdjustDown_bigHeap(HPDatatype* a, int size, int parent);//大堆向下调整

2.2 Heap.c

#define _CRT_SECURE_NO_WARNINGS 1
#include"heap.h"

void HeapPrint(HP* php)
{
	for (int i = 0; i < php->size; i++)
	{
		printf("%d ",php->a[i]);
	}
	printf("\n");
}
void Swap(int* a, int* b)
{
	int tmp = *a;
	*a = *b;
	*b = tmp; 
}

void CheckCapacity(HP* php)
{
	int newcapacity = 0;
	if (php->capacity == php->size)
	{
		newcapacity = php->capacity == 0 ? 4 : php->capacity * 2;
		HPDatatype* tmp = (int*)realloc(php->a, sizeof(HPDatatype) * newcapacity);;
		if (NULL == tmp)
		{
			printf("calloc fail\n");
			exit(-1);
		}

		php->a = tmp;
		php->capacity = newcapacity;
	}
	
	return;
}

void HeapInit(HP* php)
{
	php->a = NULL;
	php->capacity = php->size = 0;
}


void HeapDestory(HP* php)
{
	assert(php);
	free(php->a);
	php->a = NULL;
	php->capacity = php->size = 0;
}

void HeapPop(HP* php)//删除堆顶的数据
{
	assert(!HeapEmpty(php));
	assert(php);
	Swap(&(php->a[0]), &(php->a[php->size - 1]));
	php->size--;
	AdjustDown_sHeap(php->a, php->size, 0);//删除以后向下调整

}

void HeapPush(HP* php, HPDatatype x)
{
	assert(php);
	CheckCapacity(php);
	php->a[php->size] = x;
	php->size++;

	AdjustUp_sHeap(php->a, php->size - 1);
}

HPDatatype HeapTop(HP* php)
{
	assert(!HeapEmpty(php));
	assert(php);
	return php->a[0];
}

bool HeapEmpty(HP* php)
{
	assert(php);
	return php->size == 0;
}
int HeapSize(HP* php)
{
	assert(php);
	return php->size;
}


//小堆向上调整
void AdjustUp_sHeap(HPDatatype* a, int child)//child是孩子的坐标不是存储的值
{
	int parent = (child - 1) / 2;

	while (child > 0)//调整到根
	{
		if (a[child] < a[parent])
		{
			Swap(&a[child], &a[parent]);
			child = parent;
			parent = (child - 1) / 2;
		}
		else
		{
			break;
		}
	}

}

//小堆向下调整
void AdjustDown_sHeap(HPDatatype* a, int size, int parent)//child是孩子的坐标不是存储的值
{
	int child = parent * 2 + 1;

	while (child < size)
	{
		if (child + 1 < size)//防止越界
			child = a[child] < a[child + 1] ? child : child + 1;
		//if (child + 1 < size && a[child + 1] < a[child])
			//++child;
		
		if (a[child] < a[parent])
		{
			Swap(&a[parent], &a[child]);
			parent = child;
			child = parent * 2 + 1;
		}
		else
		{
			break;
		}
	}

}


//大堆向上调整
void AdjustUp_bigHeap(HPDatatype* a, int child)//child是孩子的坐标不是存储的值
{
	int parent = (child - 1) / 2;

	while (child > 0)//调整到根
	{
		if (a[child] > a[parent])
		{
			Swap(&a[child], &a[parent]);
			child = parent;
			parent = (child - 1) / 2;
		}
		else
		{
			break;
		}
	}

}

//大堆向下调整
void AdjustDown_bigHeap(HPDatatype* a, int size, int parent)//child是孩子的坐标不是存储的值
{
	int child = parent * 2 + 1;

	while (child < size)
	{
		if (child + 1 < size)//防止越界
			child = a[child] > a[child + 1] ? child : child + 1;
		//if (child + 1 < size && a[child + 1] < a[child])
			//++child;

		if (a[child] > a[parent])
		{
			Swap(&a[parent], &a[child]);
			parent = child;
			child = parent * 2 + 1;
		}
		else
		{
			break;
		}
	}

}

2.3 Test.c

#define _CRT_SECURE_NO_WARNINGS 1 
#include"heap.h"

//测试TopK问题
void PrintTopK(int* a, int n, int k)
{
	HP hp;
	HeapInit(&hp);//小堆
	
	for (int i = 0; i < k; i++)
	{
		HeapPush(&hp, a[i]);
	}

	for (int i = k; i < n; i++)
	{
		if (a[i] > HeapTop(&hp))//如果值比堆顶的值大,就交换,然后向下调整
		{
			HeapPop(&hp);//
			HeapPush(&hp, a[i]);
		}
	}
	HeapPrint(&hp);
	HeapDestory(&hp);
}
//测试TopK问题
void testtopk(){

	int n = 10000;
	int* a = (int*)malloc(sizeof(int) * n);
	srand(time(0));

	for (size_t i = 0; i < n; ++i)
	{
		a[i] = rand() % 1000000;
	}
	a[5] = 1000000 + 1;
	a[1231] = 1000000 + 2;
	a[531] = 1000000 + 3;
	a[5121] = 1000000 + 4;
	a[115] = 1000000 + 5;
	a[4] = 1000000 + 6;
	a[3] = 1000000 + 7;
	a[2] = 1000000 + 8;
	a[1] = 1000000 + 9;
	a[0] = 1000000 + 10;
	PrintTopK(a, n, 10);
}

//堆排序的实现
//升序建大堆
//降序建小堆ASA
void HeapSort(int* a,int n)
{
	//直接把a构建成堆 小堆 方法1
	//for (int i = 1; i < n; i++)
	//{
		//AdjustUp_sHeap(a, i);
	//}
	//Printarr(a, n);

	//直接把a构建成堆 小堆 方法2  
	for (int  i = ((n-1-1) / 2) ; i >= 0; --i)
	{
		//printf("%d", i);
		AdjustDown_bigHeap(a, n, i);//最后一个开始非叶子结点依次往上做向下调整。

	}
	
	int end = n - 1;
	while ( end >= 0)
	{
		Swap(&a[0], &a[end]);//
		AdjustDown_bigHeap(a, end, 0);//调堆,end是元素个数,最后一个数的下表是 个数 - 1 
		printf("end= %d\n", end);
		--end;
	}
	
	Printarr(a, n);
}

int main()
{
	//testtopk();
	//testtopk();
	int a[] = { 27,15,19,18,28,34,65,49,25,37 };
	HeapSort(a, sizeof(a) / sizeof(a[0]));
	


	return 0;
}

3. 图解关于堆的函数功能

3.1 向上调整 👇


 3.2 向下调整👇


3.3 堆Topk问题👇


3.4 堆排序👇 

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值