地籍调查--图件编制(内业部分)

一、地籍图的主要内容和表示方法

地籍图的内容包括行政区划要素、地籍要素、地形要素、数学要素、图廓要素。

1、行政区划要素

  • 行政区划要素指的是行政区界线和行政区名称。
  • 地籍图上不注记行政区代码和邮政编码。

2、地籍要素 

  • 地籍要素包括地籍区界线、地籍子区界线、土地权属界址线、界址点、图斑界线、地籍区号、地籍子区号、宗地号(含土地权属类型代码和宗地顺序号)、地类编码、土地权利人名称、坐落地址等。 
  • 地籍图上应注记单位名称和住宅小区名称。个人用地的土地使用权人名称一般不需要注记。

3、地形要素

  • 界址线依附的地形要素(地物、地貌)应表示,不可省略。
  • 可根据需要表示地貌,如等高线、高程注记、悬崖、斜坡、独立山头等。 

4、数学要素

  • 数学要素包括内外图廓线、内图廓点坐标、坐标格网线、控制点、比例尺、坐标系统等。 

5、图廓要素

  • 图廓要素包括分幅索引、密级、图名、图号、制作单位、测图时间、测图方法、图示版本、测量员、制图员、检查员等。 

 二、宗地图的编制

1、以地籍图为基础,利用地籍数据编绘宗地图。
2、根据宗地的大小和形状确定比例尺和幅面。
3、宗地图的内容:

  • 宗地所在图幅号、宗地代码;
  • 宗地权利人名称、面积及地类号;
  • 本宗地界址点、界址点号、界址线、界址边长;
  • 宗地内的图斑界线、建筑物、构筑物及宗地外紧靠界址点线的附着物;
  • 邻宗地的宗地号及相邻宗地间的界址分隔线;
  • 相邻宗地权利人、道路、街巷名称;
  • 指北方向和比例尺;
  • 宗地图的制图者、制图日期、审核者、审核日期等。

三、参考文献

TD_T 1001-2012 地籍调查规程; 

遗传算法优化BP神经网络(GABP)是一种结合了遗传算法(GA)和BP神经网络的优化预测方法。BP神经网络是一种多层前馈神经网络,常用于模式识别和预测问题,但其容易陷入局部最优。而遗传算法是一种模拟自然选择和遗传机制的全局优化方法,能够有效避免局部最优 。GABP算法通过遗传算法优化BP神经网络的权重和阈值,从而提高网络的学习效率和预测精度 。 种群:遗传算法中个体的集合,每个个体代表一种可能的解决方案。 编码:将解决方案转化为适合遗传操作的形式,如二进制编码。 适应度函数:用于评估个体解的质量,通常与目标函数相反,目标函数值越小,适应度越高。 选择:根据适应度保留优秀个体,常见方法有轮盘赌选择、锦标赛选择等。 交叉:两个父代个体交换部分基因生成子代。 变异:随机改变个体的部分基因,增加种群多样性。 终止条件:当迭代次数或适应度阈值达到预设值时停止算法 。 初始化种群:随机生成一组神经网络参数(权重和阈值)作为初始种群 。 计算适应度:使用神经网络模型进行训练和预测,根据预测误差计算适应度 。 选择操作:根据适应度选择优秀个体 。 交叉操作:对选择的个体进行交叉,生成新的子代个体 。 变异操作:对子代进行随机变异 。 替换操作:用新生成的子代替换掉一部分旧种群 。 重复步骤2-6,直到满足终止条件 。 适应度函数通常以预测误差为基础,误差越小,适应度越高。常用的误差指标包括均方根误差(RMSE)或平均绝对误差(MAE)等 。 GABP代码中包含了适应度函数的定义、种群的生成、选择、交叉、变异以及训练过程。代码注释详尽,便于理解每个步骤的作用 。 GABP算法适用于多种领域,如时间序列预测、经济预测、工程问题的优化等。它特别适合解决多峰优化问题,能够有效提高预测的准确性和稳定性 。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值