Pandas-进行数据预处理的必备知识点

本文介绍了Pandas在数据预处理中的关键步骤,包括安装、数据加载和探索、数据清洗(处理缺失值、重复数据和异常值)以及数据转换(分组、旋转和合并数据)。通过实例展示了Pandas提供的实用方法,如dropna、fillna、drop_duplicates、clip等,帮助读者掌握数据预处理技巧。
摘要由CSDN通过智能技术生成

前言

本文是该专栏的第27篇,后面会持续分享python的数据分析知识,记得关注。

对于数据预处理,它是任何数据分析,数据科学亦或者机器学习等项目中的关键步骤,它涉及将原始数据转换和清理为易于分析以及可视化,并用于建模的格式。

而pandas,作为一个流行的python开源数据分析库,它为处理结构化数据提供了强大的数据结构,并为数据操作,分析以及可视化提供了广泛的工具。

而本文,将详细为你介绍pandas在进行数据预处理的时候,遇到的各种问题的应对解决方案。

正文

1. 安装

在开始进行数据预处理的时候,先确保你的环境中安装了pandas,安装方法如下:

pip install pandas

而在代码中,引入并导入pandas的方法如下:

impor
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

写python的鑫哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值