机器学习解决问题的一般流程

数据:

数据分析和探索:

  • 整体分析数据:类型,大小,属性数目,可视化
  • 各个属性分析:类型,大小,分布
  • 问题类型识别:分类,回归,聚类
  • 数据缺失分析:缺失百分比,缺失数据和其他数据关系

数据预处理:

  • 数据抽样:Sample,有时候因为样本量较大,出于训练时间的考虑需要对样本进行采样
  • 数据过滤:对于一些脏数据进行过滤,例如对于ctr预估负样本来说的无效曝光等。
  • 数据分割:Splitter,用于交叉验证,主要是要将训练集分成Train和Validate两部分, 注意不要对整个数据进行分割,因为数据处理之后具体内容会有变化,所以我们可以仅进行index分割(即记录Id分割)。同时分割还有一些更复杂的处理技巧,比如考虑样本之间交集情况等。
    • 简单分割:Leave One Out, Kfolder
    • 复杂分割:根据Train和Test集合的重合度进行分割
    • Level分割:第一层划分后再对第一层进行第二次划分,如此继续
    • 时序分割:对于有时序的样本采用

特征:

简单处理:

  • 缺失值处理:填上与正常数据明显不同的特殊标记,例如很大的负值等;也可以利用已有值的均值或者建模推测可能的值进行补充
  • 异常处理:处理异常点,往往可以通过探索阶段生成的图找异常点,或者根据分位点找异常值
  • 其他处理:名称变换
  • 数字:主要解决峰度和偏度以及量纲不同等问题,scaling取log,去掉outlier,normalize,类别:Category,One Hot,LabelEncoder
  • 文本:各种自然语言处理例如大小写转换,驼峰字拆分,单位转换,词替换
    ‘-’字拆分
    数字词拆分
    数字转换(one->1)
    特殊字符处理
    Html字符处理
    词根还原
    单复还原
    分词
    停用词,特殊情况单独处理
    自动纠错
    长文本合并” “或者成list

特征工程:

  • 数据组合:组合一些特征得到新属性
  • 数据分割:分割一些属性得到更多属性
  • 数据筛选:只要某些属性值

  • 稀疏特征、稠密特征、embedding、表示学习

文本:Text,自然语言处理的各项技术上!
大小写转换
驼峰字拆分
单位转换
词替换
‘-’字拆分
数字词拆分
数字转换(one->1)
特殊字符处理
Html字符处理
词根还原
单复还原
分词
停用词,特殊情况单独处理
自动纠错
长文本合并” “或者成list
其他

模型选择:

模型是指基于训练数据集,所要学习到的概率分布或者决策函数,比如线性模型(线性回归,逻辑回归等),非线性模型(决策树,神经网络)。还有个重要概念,就是模型的假设空间。比如需要学习的决策函数为线性函数,则所有的线性函数构成了该模型的假设空间。

策略(损失函数)确定:

确定了需要学习哪种模型,接下来任务的便是从该类模型的假设空间中选择出最优的模型。

模型的优劣需要通过一定的准则来评价,直观来讲,选用模型的预测误差作为评判标准比较合理。而不同的模型基于模型原理或解优化的便利性,往往对应着不同的误差函数,也叫损失函数,如:

  • 平方损失函数,对应线性回归;
  • 对数损失函数,对应logistic回归;
  • 指数损失函数,对应boosting;
  • hinge损失函数,对应SVM;

这里所说的策略就是指:当目标函数仅含有损失函数时,对应经验风险最小化策略,即选择的最优模型在训练集上的平均损失最小;而当目标函数由损失函数项和正则化项构成时,对应结构风险最小化策略,即选择的最优模型不仅在训练集上平均误差比较小,同时在测试集上也能有不错的表现,也就是说得到的模型要有较好的泛化能力。

当样本集数目足够大时,由于样本的覆盖量足够大,能较好地体现实际数据的分布,直接采用经验风险最小化策略就能保证有很好的学习效果;但当样本容量不够充足时,并不能很好的体现真实的数据分布,因此过于追求减小模型在训练集上的误差,就容易导致“过拟合”现象,即学习到的模型在未知测试数据上效果不理想。
5. logloss、hingeloss、softmax、hierarchical softmax、negative sampling……

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
机器学习是一种通过计算机算法和模型来解决问题的方法。它可以自动地从数据中发现规律和模式,并用这些规律和模式来进行预测和分类。机器学习的基本流程可以分为以下几个步骤: 1. 数据收集和准备 机器学习需要大量的数据来进行训练。在进行数据收集前,需要明确问题的具体需求,并考虑如何收集和准备数据。数据的来源可以是现有的数据集,也可以是通过爬虫等方式收集的原始数据。在进行数据收集之前,还需要对数据进行清洗和格式化,以保证数据的质量和可用性。 2. 特征提取 在进行机器学习之前,需要对数据进行特征提取。特征是指能够描述数据的属性或特征,如颜色、形状、大小等。通过对数据进行特征提取,可以将数据转换为机器学习算法能够处理的格式,也可以减少模型的复杂度和训练时间。 3. 模型选择和训练 在进行模型选择之前,需要明确问题的类型和目标,并根据问题的特点选择合适的机器学习算法。常见的机器学习算法包括决策树、神经网络、支持向量机等。在选择模型之后,需要使用训练数据对模型进行训练。训练数据包括已知的输入和输出,模型会根据这些数据来学习和优化自己的参数。 4. 模型评估和优化 在模型训练完成之后,需要对模型进行评估和优化。评估模型的好坏可以使用一些指标,如准确率、精确率、召回率等。如果模型的表现不好,可以通过调整模型参数、增加训练数据等方式来进行优化。 5. 模型部署和应用 在模型训练和优化完成之后,需要将模型部署到实际的应用中。部署的方式可以是将模型嵌入到应用程序中,也可以使用API服务的形式进行调用。在应用中使用机器学习模型可以帮助我们解决一些复杂的问题,如图像识别、语音识别、自然语言处理等。 总的来说,机器学习解决问题的步骤包括数据收集和准备、特征提取、模型选择和训练、模型评估和优化、模型部署和应用等。在不同的问题场景下,可能需要针对具体的需求进行一些调整和优化。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值