softmax和log_softmax,CrossEntropyLoss()和NLLLoss()

1. Softmax:接收一个实数向量,返回一个概率分布。假设X是一个实数的向量(正数或者负数都可以),然后第i个softmax(x)的组成是 

                                                                                 

log_softmax: 在softmax的结果上再做一次log运算,数学上等价于log(softmax(x)),但比这两个操作单独做快很多

2.NLLLoss的输入是一个对数概率向量和一个目标标签,自身不会计算对数概率

 经常用于网络的最后一层是log_softmax

nn.CrossEntroyLoss()与NLLLoss相同,不同的是交叉熵loss会计算softmax,用于多分类模型

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值