CrossEntropyLoss 和NLLLoss的关系

交叉熵损失在做一件什么事?

看公式:

x是预测(不需要softmax归一化),y是label, N是batch维度的数量,交叉熵损失,干了三件事.

1. 对输入在类别维度求softmax

2. 多softmax后的数,求log

3. 对(样本数, 类别数)为shape的tensor计算NLLLoss.

其中,NLLloss做的就是log取负, 和one-hot编码点乘.相加得到最终的总损失,因为reduction默认为mean,所以除以样本数.看以下代码.

代码实现

# 

import torch
import torch.nn as nn

#
# cross entropy loss = softmax + log + nllloss
# 先softmax, 再 log,

# 初始化 input_ 和 target
input_ = torch.randn(3,3)
target = torch.tensor([0,2,1])
mask = torch.zeros(3,3)
mask[0,0] = 1
mask[1,2] = 1
mask[2,1] = 1

# 1.0 输入softmax
sft_ = nn.Softmax(dim = -1)(input_)

# 2.0 log
log_ = torch.log(sft_)

# 3.0 nllloss
loss = nn.NLLLoss()

print("split loss")
print(loss(log_, target))

# 4.0 crossentropy
print("ce loss")
loss = nn.CrossEntropyLoss()
print(loss(input_, target))

print("manual loss")
neg_log = 0 - log_
print(torch.sum(mask *neg_log ) / 3)

# ----------输出--------------
>> loss_function python crossEntropyLoss.py
>> split loss
>> tensor(1.2294)
>> ce loss
>> tensor(1.2294)
>> manual loss
>> tensor(1.2294)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值