使用C++、opencv基于不同的颜色空间调节图像亮度
该博客简单介绍了RGB、YUV、HSI等颜色空间的相关知识,并附RGB转到另两个颜色空间的转换公式: https://www.cnblogs.com/justkong/p/6570914.html
https://blog.csdn.net/sinat_26917383/article/details/70860910及https://wenku.baidu.com/view/6273f20a581b6bd97f19ea99.html也都介绍了不同的颜色空间的相关知识。
该博客介绍了opencv中颜色转换的函数及RGB转HSV空间的实际应用:https://blog.csdn.net/dieju8330/article/details/82465616
注:opencv中HSI、HSV、HSL中的H分量的范围是0-180,剩下两个(SI、SL、SV)都是0-255;
V分量即是RGB中最大的那个分量,与图像亮度无关,所以选择HSL空间研究;
opencv中颜色空间转换函数在2.x与3.x版本中都是cvtColor(InputArray src, OutputArray dst, int code, int dstCn=0),只是code的宏定义的写法有点区别(3.x中将2.x中的CV前缀变为COLOR前缀)。
该博客介绍了HSL与HSV颜色空间的区别:https://blog.csdn.net/binglan520/article/details/56288135
注:在公式上HSL、HSV、HSI的区别在于:L=(MAX(R,G,B)+MIN(R,G,B))/2;V=MAX(R,G,B));I=(R+G+B)/3。
该博客介绍了不同光照条件(即亮度条件)下几个颜色空间的色彩分量的区别及应用颜色阈值进行分割的相关知识:https://blog.csdn.net/wc781708249/article/details/78517463
本代码在不同颜色空间下(HSI、Lab、YCrCb),对跟亮度有关的颜色分量(I、L、Y)进行直方图均衡化,达到平衡亮度的效果,其次以YCrCb空间为例,展示利用滑动条调节图像整体Y值。
相关重要API:
void cvtColor(InputArray src, OutputArray dst, int code, int dstCn=0 );
颜色空间转换函数
InputArray src: 输入图像即要进行颜色空间变换的原图像,可以是Mat类;
OutputArray dst: 输出图像即进行颜色空间变换后存储图像,也可以Mat类;
int code: 转换的代码或标识,即在此确定将什么制式的图片转换成什么制式的图片,具体见下图;
int dstCn = 0: 目标图像通道数,如果取值为0,则由src和code决定
void split(const Mat& src, Mat*mvbegin);
void split(InputArray m,OutputArrayOfArrays mv);
split()函数可以把一幅图像各个通道分离开
第一个参数为要进行分离的图像矩阵,第二个参数可以是Mat数组的首地址,或者一个vector<Mat>对象
void merge(const Mat* mv, size_tcount, OutputArray dst)
void merge(InputArrayOfArrays mv,OutputArray dst)
经过对各个通道单独操作后可以用merge()函数进行合并
第一种:第一个参数是图像矩阵数组,第二个参数是需要合并矩阵的个数,第三个参数是输出。
第二种:第一个参数是图像矩阵向量容器,第二个参数是输出,这种方法无需说明需要合并的矩阵个数,vector对象自带说明。
以上部分参考:https://blog.csdn.net/keith_bb/article/details/53470170、https://blog.csdn.net/u012819339/article/details/82222008、https://blog.csdn.net/xiexu911/article/details/79722535
#include "stdafx.h"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <iostream>
#include <fstream>
#include <iterator>
using namespace cv;
using namespace std;
//定义一些变量及声明函数
Mat src = imread("C:\\Users\\lenovo\\Desktop\\1.jpg");
Mat hsv, lab, ycrcb;
Mat hsvdst, labdst, ycrcbdst;
Mat dst(src.size(), src.type(), Scalar::all(0));
void balance_hsv(Mat & hsv);
void balance_lab(Mat & lab);
void balance_ycrcb(Mat & ycrcb);
void drawHist(Mat cur);
int y_value = 0;
void on_changebright(int, void *);
int main(int argc, char** argv)
{
system("color 02");
/*//获取图像每个像素点的RGBHSVLabYCrCb的值,并写入文件中
cvtColor(src, hsv, COLOR_BGR2HSV);
cvtColor(src, lab, COLOR_BGR2Lab);
cvtColor(src, ycrcb, COLOR_BGR2YCrCb);
FILE *fp;
fopen_s(&fp, "C:\\Users\\lenovo\\Desktop\\RGB数据.xls", "a");
for(int i=0;i<src.rows;i++)
for (int j = 0; j < src.cols; j++)
{
fprintf(fp, "%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\n", src.at<Vec3b>(i, j)[2], src.at<Vec3b>(i, j)[1], src.at<Vec3b>(i, j)[0],
hsv.at<Vec3b>(i, j)[0], hsv.at<Vec3b>(i, j)[1], hsv.at<Vec3b>(i, j)[2],
lab.at<Vec3b>(i, j)[0], lab.at<Vec3b>(i, j)[1], lab.at<Vec3b>(i, j)[2],
ycrcb.at<Vec3b>(i, j)[0], ycrcb.at<Vec3b>(i, j)[1], ycrcb.at<Vec3b>(i, j)[2]);
}
fclose(fp);*/
//平衡图像亮度
balance_hsv(src);
balance_lab(src);
balance_ycrcb(src);
//显示源图像
namedWindow("src", WINDOW_NORMAL);
imshow("src", src);
//创建调节Y值的滑动条
createTrackbar("y", "bright", &y_value, 200,on_changebright);
//滑动条回调函数
on_changebright(0, 0);
waitKey(0);
return 0;
}
void balance_hsv(Mat & src)
{
//将源图像转换到HSV颜色空间
cvtColor(src, hsv, COLOR_BGR2HSV);
//分割为3通道
Mat splitchannels[3], temp;
split(hsv, splitchannels);
if (splitchannels[2].channels() == 1)
{
equalizeHist(splitchannels[2], temp);//直方图均衡化
}
/*drawHist(dst);//调用函数画直方图
imshow("hist", yuvhist);//显示均衡化的直方图*/
std::vector<Mat> dst_merge;
dst_merge.push_back(splitchannels[0]);
dst_merge.push_back(splitchannels[1]);
dst_merge.push_back(temp);
//合并修改过的3个通道图像
merge(dst_merge, dst);
//转换回RGB空间
cvtColor(dst, hsvdst, COLOR_HSV2BGR);
//显示经直方图均衡化的图像
namedWindow("balance_V", WINDOW_NORMAL);
imshow("balance_V", hsvdst);
}
void balance_lab(Mat & src)
{
//将源图像转换到Lab颜色空间
cvtColor(src, lab, COLOR_BGR2Lab);
Mat splitchannels[3], temp;
split(lab, splitchannels);
if (splitchannels[0].channels() == 1)
{
equalizeHist(splitchannels[0], temp);//直方图均衡化
}
/*drawHist(dst);//调用函数画直方图
imshow("hist", yuvhist);//显示均衡化的直方图*/
std::vector<Mat> dst_merge;
dst_merge.push_back(temp);
dst_merge.push_back(splitchannels[1]);
dst_merge.push_back(splitchannels[2]);
//合并修改过的3个通道图像
merge(dst_merge, dst);
//转换回RGB空间
cvtColor(dst, labdst, COLOR_Lab2BGR);
//显示经直方图均衡化的图像
namedWindow("balance_L", WINDOW_NORMAL);
imshow("balance_L", labdst);
}
void balance_ycrcb(Mat & src)
{
//将源图像转换到YCrCb颜色空间
cvtColor(src, ycrcb, COLOR_BGR2YCrCb);
Mat splitchannels[3], temp;
split(ycrcb, splitchannels);
if (splitchannels[0].channels() == 1)
{
equalizeHist(splitchannels[0], temp);//直方图均衡化
}
/*drawHist(dst);//调用函数画直方图
imshow("hist", yuvhist);//显示均衡化的直方图*/
std::vector<Mat> dst_merge;
dst_merge.push_back(temp);
dst_merge.push_back(splitchannels[1]);
dst_merge.push_back(splitchannels[2]);
//合并修改过的3个通道图像
merge(dst_merge, dst);
//转换回RGB空间
cvtColor(dst, ycrcbdst, COLOR_YCrCb2BGR);
//显示经直方图均衡化的图像
namedWindow("balance_Y", WINDOW_NORMAL);
imshow("balance_Y", ycrcbdst);
}
void on_changebright(int, void *)
{
Mat src1;
//将源图拷贝至目标图实现变化实时更新
dst.copyTo(src1);
//转换至YCrCb颜色空间
cvtColor(src1, src1, COLOR_BGR2YCrCb);
//调节每个点的Y值,这里也可以换成其他变化,如降低图像的亮度值或其他颜色值
for(int i=0;i<src1.rows;i++)
for (int j = 0; j < src1.cols; j++)
{
//Y值增加一个给定值
src1.at<Vec3b>(i, j)[2] += y_value;
//溢出保护
if (src1.at<Vec3b>(i, j)[2] > 255 )
src1.at<Vec3b>(i, j)[2] = 255;
}
//转换回RGB空间观察变化
cvtColor(src1, src1, COLOR_HSV2BGR);
//显示亮度调节后的图像
namedWindow("bright", WINDOW_NORMAL);
imshow("bright", src1);
}
void drawHist(Mat cur)
{
//需要计算图像的哪个通道(bgr空间需要确定计算 b或g或r空间)
const int channels[1] = { 0 };
//直方图的每一个维度的 柱条的数目(就是将灰度级分组)
int histSize[] = { 256 }; //如果这里写成int histSize = 256; 那么下面调用计算直方图的函数的时候,该变量需要写 &histSize
//定义一个变量用来存储 单个维度 的数值的取值范围
float midRanges[] = { 0, 256 };
//确定每个维度的取值范围,就是横坐标的总数
const float *ranges[] = { midRanges };
//输出的结果存储的 空间 ,用MatND类型来存储结果
MatND dstHist;
calcHist(&cur, 1, channels, Mat(), dstHist, 1, histSize, ranges, true, false);
//calcHist 函数调用结束后,dstHist变量中将储存了 直方图的信息 用dstHist的模版函数 at<Type>(i)得到第i个柱条的值 at<Type>(i, j)得到第i个并且第j个柱条的值
//首先先创建一个白底的图像,为了可以显示彩色,所以该绘制图像是一个8位的3通道图像
yuvhist = Mat(Size(128, 128), CV_8UC3, Scalar::all(255));
//一个图像的某个灰度级的像素个数(最多为图像像素总数),可能会超过显示直方图的所定义的图像的尺寸,因此绘制直方图的时候,让直方图最高的地方只有图像高度的90%来显示
//先用minMaxLoc函数来得到计算直方图后的像素的最大个数
double g_dHistMaxValue;
minMaxLoc(dstHist, 0, &g_dHistMaxValue, 0, 0);
//遍历直方图得到的数据
for (int i = 0; i < 128; i++)
{
int value = cvRound(128 * 0.9 *(dstHist.at<float>(i) / g_dHistMaxValue));
line(yuvhist, Point(i, yuvhist.rows - 1), Point(i, yuvhist.rows - 1 - value), Scalar(0, 255, 50));
}
}
源图像:
平衡V后的图像:
平衡L后的图像:
平衡Y后的图像:
调节Y值的图像(其他变化,如降低图像的亮度值或其他颜色值等可自行根据需求尝试):
画出的直方图就不演示了。